CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation |
Yuhang Zhao , Biao Liu , Junliang Yang , Jun He*, and Jie Jiang* |
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China |
|
Cite this article: |
Yuhang Zhao , Biao Liu , Junliang Yang et al 2020 Chin. Phys. Lett. 37 088501 |
|
|
Abstract Biological bipolar metaplasticities were successfully mimicked in two-dimensional (2D) MoS$_{2}$ transistors via the implementation of two different MoS$_{2}$ surface decorations, poly (vinyl alcohol) (PVA) and chitosan bio-polymers. Interestingly, the depressing metaplasticity was successfully mimicked when the PVA bio-polymer was used as the surface decoration layer, whereas the metaplasticity of long-term potentiation was realized when the chitosan bio-polymer was taken as the surface decoration layer. Furthermore, the electronic band structures of the 2D MoS$_{2}$ devices with different surface decorations were further investigated using first-principles calculations for understanding the underlying mechanisms of such bipolar metaplasticities. These results will deepen our understanding of metaplasticity, and have great potential in neuromorphic computing applications.
|
|
Received: 17 May 2020
Published: 28 July 2020
|
|
|
|
Fund: Supported by the Central South University Research Fund for Innovation-Driven Program (Grant No. 2019CX024), the Natural Science Foundation of Hunan Province (Grant No. 2018JJ3652), the China Postdoctoral Science Foundation (Grant Nos. 2018M632985 and 2018T110839), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts333). |
|
|
[1] | Feng G, Jiang J, Zhao Y, Wang S, Liu B, He J and Wan Q 2020 Adv. Mater. 32 1906171 |
[2] | Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y and Wan Q 2017 Small 13 1700933 |
[3] | MacDonald J F, Jackson M F and Beazely M A 2007 Biochim. Biophys. Acta - Biomembr. 1768 941 |
[4] | Abraham W C and Bear M F 1996 Trends Neurosci. 19 126 |
[5] | Thompson R F 1986 Science 233 941 |
[6] | Sehgal M, Song C, Ehlers V L and Moyer J R 2013 Neurobiol. Learn. Mem. 105 186 |
[7] | Hulme S R, Jones O D, Raymond C R, Sah P and Abraham W C 2014 Philos. Trans. R. Soc. B. Biol. Sci. 369 20130148 |
[8] | Cohen A and Abraham W C 1996 J. Neurophysiol. 76 953 |
[9] | Christie B R and Abraham W C 1992 Neuron 9 79 |
[10] | Zhu X, Du C, Jeong Y and Lu W D 2017 Nanoscale 9 45 |
[11] | Lee T H, Hwang H G, Woo J U, Kim D H, Kim T W and Nahm S 2018 ACS Appl. Mater. & Interfaces 10 25673 |
[12] | Liu B, Liu Z, Chiu I S, Di M, Wu Y, Wang J C and Lai C S 2018 ACS Appl. Mater. & Interfaces 10 20237 |
[13] | Kim B Y, Hwang H G, Woo J U, Lee W H, Lee T H, Kang C Y, Nahm S 2017 NPG Asia Mater. 9 e381 |
[14] | Tan Z, Yang R, Terabe K, Yin X, Zhang X and Guo X 2016 Adv. Mater. 28 377 |
[15] | Wu Q, Wang H, Luo Q, Banerjee W, Cao J, Zhang X and Liu M 2018 Nanoscale 10 5875 |
[16] | Cheng C, Li Y, Zhang T, Fang Y, Zhu J, Liu K and Huang R 2018 J. Appl. Phys. 124 152103 |
[17] | Mazur T, Zawal P and Szaciłowski K 2019 Nanoscale 11 1080 |
[18] | Jiang J, Hu W, Xie D, Yang J, He J, Gao Y and Wan Q 2019 Nanoscale 11 1360 |
[19] | Hu W, Zheng Z and Jiang J 2017 Org. Electron. 44 1 |
[20] | Hu W, Jiang J, Xie D, Wang S, Bi K, Duan H and He J 2018 Nanoscale 10 14893 |
[21] | Guo J, Jiang J, Zheng Z and Yang B 2017 Org. Electron. 40 75 |
[22] | John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q and Mathews N 2018 Adv. Mater. 30 1800220 |
[23] | Abraham W C 2008 Nat. Rev. Neurosci. 9 387 |
[24] | Asare-Yeboah K, Bi S, He Z and Li D 2016 Org. Electron. 32 195 |
[25] | He Z, Shaik S, Bi S, Chen J and Li D 2015 Appl. Phys. Lett. 106 183301 |
[26] | He Z, Chen J and Li D 2019 Soft Matter 15 5790 |
[27] | He Z, Zhang Z, Asare-Yeboah K and Bi S 2019 J. Mater. Sci.: Mater. Electron. 30 14335 |
[28] | Xu H F, Cui J, Sun W and Guo X F 2019 Chin. Phys. B 28 108501 |
[29] | Liu Y, Liu K, Chen R S, Liu Y R, En Y F and Li B 2017 Chin. Phys. Lett. 34 018501 |
[30] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 |
[31] | Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Baillargeat A and Olivier D 2012 Adv. Funct. Mater. 22 1385 |
[32] | Kuzum D, Yu S and Wong H S 2013 Nanotechnology 24 382001 |
[33] | Sudhamani S R, Prasad M S and Sankar K U 2003 Food Hydrocolloids DSC FTIR 17 245 |
[34] | Sarker B K and Khondaker S I 2012 Appl. Phys. Lett. 100 023301 |
[35] | Xie D, Hu W and Jiang J 2018 Org. Electron. 63 120 |
[36] | Wang J, Chen Y, Kong L, Fu Y, Gao Y and Sun J 2018 Appl. Phys. Lett. 113 151101 |
[37] | Feng G, Zhao Y and Jiang J 2019 Solid-State Electron. 153 16 |
[38] | John R A, Ko J, Kulkarni M R, Tiwari N, Chien N A, Geok N, Leong W L and Mathews N 2017 Small 13 1701193 |
[39] | Jackman S L and Regehr W G 2017 Neuron 94 447 |
[40] | Sheridan P M, Cai F, Du C, Ma W, Zhang Z and Lu W D 2017 Nat. Nanotechnol. 12 784 |
[41] | Bienenstock E L, Cooper L N and Munro P W 1982 J. Neurosci. 2 32 |
[42] | Malenka R C and Bear M F 2004 Neuron 44 5 |
[43] | Zhao Y, Feng G and Jiang J 2020 Solid-State Electron. 165 107767 |
[44] | Dudek S M and Bear M F 1992 Proc. Natl. Acad. Sci. USA 89 4363 |
[45] | Artola A, Bröcher S and Singer W 1990 Nature 347 69 |
[46] | Hulme S R, Jones O D, Ireland D R and Abraham W C 2012 J. Neurosci. 32 6785 |
[47] | Ragert P, Schmidt A, Altenmüller E and Dinse H R 2004 Eur. J. Neurosci. 19 473 |
[48] | Zhao D L, Wang X X, Zeng X W, Xia Q S and Tang J T 2009 J. Alloys Compd. 477 739 |
[49] | Depan D, Girase B, Shah J S and Misra R D K 2011 Acta Biomater. 7 3432 |
[50] | Park Y and Lee J S 2017 ACS Nano 11 8962 |
[51] | Cohen A S, Coussens C M, Raymond C R and Abraham W C 1999 J. Neurophysiol. 82 3139 |
[52] | Ireland D R, Guevremont D, Williams J M and Abraham W C 2004 J. Neurophysiol. 92 2811 |
[53] | Ireland D R and Abraham W C 2002 J. Neurophysiol. 88 107 |
[54] | Oh M C, Derkach V A, Guire E S and Soderling T R 2006 J. Biol. Chem. 281 752 |
[55] | Crestani A P, Krueger J N and Barragan E V 2019 Neuropsychopharmacology 44 408 |
[56] | Bliss T V and Collingridge G L 1993 Nature 361 31 |
[57] | Abraham W C and Tate W P 1997 Prog. Neurobiol. 52 303 |
[58] | Abbott L F and Nelson S B 2000 Nat. Neurosci. 3 1178 |
[59] | Xu Z, Chen R Q, Gu Q H, Yan J Z, Wang S H, Liu S Y and Lu W 2009 J. Neurosci. 29 8764 |
[60] | Gamo N J and Arnsten A F 2011 Behav. Neurosci. 125 282 |
[61] | Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851 |
[62] | Liu B, Long M, Yang J and Cai M Q 2018 Appl. Phys. Lett. 112 043901 |
[63] | Liu B, Long M, Cai M Q and Yang J 2018 J. Phys. D 51 105101 |
[64] | Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 |
[65] | Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y and Zhang H 2011 ACS Nano 6 74 |
[66] | Artola A, Kamal A, Ramakers G M J, Biessels G J and Gispen W H 2005 J. Neurosci. 22 169 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|