Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087801    DOI: 10.1088/0256-307X/37/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Large Photoluminescence Enhancement by an Out-of-Plane Magnetic Field in Exfoliated WS$_2$ Flakes
Sibai Sun1,2, Jianchen Dang1,2, Xin Xie1,2, Yang Yu1,2, Longlong Yang1,2, Shan Xiao1,2, Shiyao Wu1,2, Kai Peng1,2, Feilong Song1,2, Yunuan Wang1,3, Jingnan Yang1,2, Chenjiang Qian1,2, Zhanchun Zuo1,2, and Xiulai Xu1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory of Luminescence and Optical Information (Ministry of Education), Beijing Jiaotong University, Beijing 100044, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Sibai Sun, Jianchen Dang, Xin Xie et al  2020 Chin. Phys. Lett. 37 087801
Download: PDF(864KB)   PDF(mobile)(849KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an out-of-plane magnetic field induced large photoluminescence enhancement in WS$_2$ flakes at $4$ K, in contrast to the photoluminescence enhancement provided by an in-plane field in general. Two mechanisms for the enhancement are proposed. One is a larger overlap of the electron and hole caused by the magnetic field induced confinement. The other is that the energy difference between $\varLambda$ and $K$ valleys is reduced by magnetic field, and thus enhancing the corresponding indirect-transition trions. Meanwhile, the Landé $g$ factor of the trion is measured to be $-0.8$, whose absolute value is much smaller than normal exciton, which is around $|-4|$. A model for the trion $g$ factor is presented, confirming that the smaller absolute value of the Landé $g$ factor is a behavior of this $\varLambda$–$K$ trion. By extending the valley space, we believe this work provides a further understanding of the valleytronics in monolayer transition metal dichalcogenides.
Received: 03 May 2020      Published: 28 July 2020
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Supported by the National Natural Science Foundation of China (Grants Nos. 11934019, 61675228, 11721404, 51761145104 and 11874419), the Strategic Priority Research Program, the Instrument Developing Project and the Interdisciplinary Innovation Team of the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YJKYYQ20180036), and the Key Research and Development Program of Guangdong Province (Grant No. 2018B030329001).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sibai Sun
Jianchen Dang
Xin Xie
Yang Yu
Longlong Yang
Shan Xiao
Shiyao Wu
Kai Peng
Feilong Song
Yunuan Wang
Jingnan Yang
Chenjiang Qian
Zhanchun Zuo
and Xiulai Xu
[1] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[4] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[5] Allain A and Kis A 2014 ACS Nano 8 7180
[6] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141
[7] Wang G, Bouet L, Glazov M M, Amand T, Ivchenko E L, Palleau E, Marie X and Urbaszek B 2015 2D Mater. 2 034002
[8] Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S and Högele A 2020 arXiv:2002.11646 [cond-mat.mes-hall]
[9] Rybkovskiy D V, Gerber I C and Durnev M V 2017 Phys. Rev. B 95 155406
[10] Wu Y J, Shen C, Tan Q H, Zhang J, Tan P H and Zheng H Z 2018 Acta Phys. Sin. 67 147801 (in Chinese)
[11] Koperski M, Molas M R, Arora A, Nogajewski K, Slobodeniuk A O, Faugeras C and Potemski M 2017 Nanophotonics 6 1289
[12] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B 88 085433
[13] Molas M R, Faugeras C, Slobodeniuk A O, Nogajewski K, Bartos M, Basko D M and Potemski M 2017 2D Mater. 4 021003
[14] Zhang X X, Cao T, Lu Z G, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotechnol. 12 883
[15]$Q$ and $\varLambda$ points in the Brillouin zone have common $x$, $y$ but different $z$. For monolayer 2D materials, $Q$ and $\varLambda$ can be treated as the same
[16] Lindlau J, Robert C, Funk V, Förste J, Förg M, Colombier L, Neumann A, Courtade E, Shree S, Taniguchi T, Watanabe K, Glazov M M, Marie X, Urbaszek B and Högele A 2017 arXiv:1710.00988 [cond-mat.mes-hall]
[17] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[18] Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W and Yu T 2015 Nano Res. 8 2562
[19] Wickramaratne D, Zahid F and Lake R K 2014 J. Chem. Phys. 140 124710
[20] Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C, Schüller C and Korn T 2015 Phys. Status Solidi RRL 9 457
[21] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F 2015 Phys. Rev. Lett. 115 126802
[22] Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218
[23] Barbone M, Montblanch A R P, Kara D M, Palacios-Berraquero C, Cadore A R, De Fazio D, Pingault B, Mostaani E, Li H, Chen B, Watanabe K, Taniguchi T, Tongay S, Wang G, Ferrari A C and Atatüre M 2018 Nat. Commun. 9 3721
[24] Qu F, Braganca H, Vasconcelos R, Liu F, Xie S J and Zeng H 2019 2D Mater. 6 045014
[25] Cao S, Tang J, Sun Y, Peng K, Gao Y, Zhao Y, Qian C, Sun S, Ali H, Shao Y, Wu S, Song F, Williams D A, Sheng W, Jin K and Xu X 2016 Nano Res. 9 306
[26] Chen X, Xing J, Zhu L, Zha F X, Niu Z, Guo S and Shao J 2016 J. Appl. Phys. 119 175301
[27] Tang J and Xu X L 2018 Chin. Phys. B 27 027804
[28] Hou H Q, Staguhn W, Takeyama S, Miura N, Segawa Y, Aoyagi Y and Namba S 1991 Phys. Rev. B 43 4152
[29] Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466
[30] Kamimura H 1986 Solid State Commun. 59 405
[31] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
[32] Carvalho B R, Wang Y, Mignuzzi S, Roy D, Terrones M, Fantini C, Crespi V H, Malard L M and Pimenta M A 2017 Nat. Commun. 8 1
[33] Koperski M, Molas M R, Arora A, Nogajewski K, Bartos M, Wyzula J, Vaclavkova D, Kossacki P and Potemski M 2018 2D Mater. 6 015001
[34] Dang J, Sun S, Xie X, Yu Y, Peng K, Qian C, Wu S, Song F, Yang J, Xiao S, Yang L, Wang Y W, Rafiq M A, Wang C and Xu X 2020 npj 2D Mater. Appl. 4 2
[35] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[36] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[37] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[38] Nagler P, Ballottin M V, Mitioglu A A, Mooshammer F, Paradiso N, Strunk C, Huber R, Chernikov A, Christianen P C M, Schüller C and Korn T 2017 Nat. Commun. 8 1551 ISSN 2041
[39] Stier A V, McCreary K M, Jonker B T, Kono J and Crooker S A 2016 Nat. Commun. 7 10643
[40] Plechinger G, Nagler P, Arora A, Granados del Águila A, Ballottin M V, Frank T, Steinleitner P, Gmitra M, Fabian J, Christianen P C M, Bratschitsch R, Schüller C and Korn T 2016 Nano Lett. 16 7899
[41] Lyons T, Dufferwiel S, Brooks M, Withers F, Taniguchi T, Watanabe K, Novoselov K, Burkard G and Tartakovskii A 2019 Nat. Commun. 10 2330
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[44] Sun S, Yu Y, Dang J, Peng K, Xie X, Song F, Qian C, Wu S, Ali H, Tang J, Yang J, Xiao S, Tian S, Wang M, Shan X, Rafiq M A, Wang C and Xu X 2019 Appl. Phys. Lett. 114 113104
[45] He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497
[46] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Nanotechnol. 10 491
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087801
[2] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 087801
[3] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 087801
[4] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 087801
[5] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 087801
[6] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 087801
[7] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 087801
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 087801
[9] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 087801
[10] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 087801
[11] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 087801
[12] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 087801
[13] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 087801
[14] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 087801
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 087801
Viewed
Full text


Abstract