CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure |
Jie-Min Xu1,2, Shu-Yang Wang1,2, Wen-Jun Wang1,2, Yong-Hui Zhou1,2, Xu-Liang Chen1, Zhao-Rong Yang1, and Zhe Qu1* |
1Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
|
|
Cite this article: |
Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang et al 2020 Chin. Phys. Lett. 37 076202 |
|
|
Abstract We present a high-pressure study of van der Waals ferromagnetic metal Fe$_{3}$GeTe$_{2}$ through electrical transport and Raman scattering measurements in diamond anvil cells at pressures up to 22.4 GPa. Upon compression, the ferromagnetic transition temperature $T_{\rm c}$ manifested by a kink in resistance curve decreases monotonically and becomes undiscernable around $P_{\rm c} = 10$ GPa, indicative of suppression of the itinerant ferromagnetism. Meanwhile, by fitting the low temperature resistance to the Fermi liquid behavior of $R =R_{0} + AT^{2}$, we found that $R_{0}$ shows a cusp-like anomaly and the coefficient $A$ diverges around $P_{\rm c}$. These transport anomalies imply a tricritical point as commonly observed in itinerant ferromagnets under pressure. Unexpectedly, the Raman-active $E_{2g}$ and $A_{1g}$ modes soften remarkably after an initial weak hardening and the peak widths of both modes broaden evidently on approaching $P_{\rm c}$, followed by complete disappearance of both modes above this critical pressure. A possible underlying mechanism for such anomalous lattice softening near $P_{\rm c}$ is discussed.
|
|
Received: 10 March 2020
Published: 21 June 2020
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
72.90.+y
|
(Other topics in electronic transport in condensed matter)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. 11774352, U1832214, U19A2093, 11804344, U1632275, 11874362, 11704387, and U1932152), the Users with Excellence Project of Hefei Center CAS (Grant No. 2018HSC-UE012), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002), the Youth Innovation Promotion Association CAS (Grant No. 2020443). |
|
|
[1] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Di. Zhong, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 |
[2] | McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 |
[3] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 |
[4] | Zhang X, Zhao Y, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001 |
[5] | Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Cao L, Qu Z and Xiong Y 2017 Phys. Rev. B 96 134428 |
[6] | Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T and Shi J 2019 Nano Lett. 19 4400 |
[7] | Du L, Tang J, Zhao Y, Li X, Yang R, Hu X, Bai X, Wang X, Watanabe K, Taniguchi T, Shi D, Yu G, Bai X, Hasan T, Zhang G and Sun Z 2019 Adv. Funct. Mater. 29 1904734 |
[8] | Li X, Zhang J, You L, Su Y and Tsymbal E Y 2019 Nano Lett. 19 5133 |
[9] | Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303 |
[10] | Milosavljević A et al. 2019 Phys. Rev. B 99 214304 |
[11] | Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554 |
[12] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 |
[13] | Chen H Y, He C Y, Gao C X et al. 2007 Chin. Phys. Lett. 24 158 |
[14] | Ren G Z, Jia X P, Zhu P W et al. 2005 Chin. Phys. Lett. 22 236 |
[15] | Du Z X and Zheng H F 2008 Chin. Phys. Lett. 25 1875 |
[16] | Jiang S, Liu J, Li X D et al. 2019 Chin. Phys. Lett. 36 046103 |
[17] | Zhang W, Yao L D, You S J et al. 2007 Chin. Phys. Lett. 24 536 |
[18] | Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407 |
[19] | Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, Sun Z, Shen W, Wei B, Hu W, Liu X, Huang L, Hu C, Wang Z, Jiang C, Yang S, Zhang Q M and Qu Z 2019 ACS Nano 13 11353 |
[20] | Doiron-Leyraud N, Walker I R, Taillefer L, Steiner M J, Julian S R and Lonzarich G G 2003 Nature 425 595 |
[21] | Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001 |
[22] | Matsuda M, Lin F K, Yu R, Cheng J G, Wu W, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q, Luo J L and Uwatoko Y 2018 Phys. Rev. X 8 031017 |
[23] | Maczka M, Paraguassu W, Filho A G S, Freire P T C, Filho J M and Hanuza J 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 77 094137 |
[24] | Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M and Guo Y 2020 J. Alloys Compd. 819 153368 |
[25] | Taufour V, Aoki D, Knebel G and Flouquet J 2010 Phys. Rev. Lett. 105 217201 |
[26] | Cochran W 1959 Adv. Phys. 9 387 |
[27] | Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711 |
[28] | Matsuura K, Cong P T, Zherlitsyn S, Wosnitza J, Abe N and Arima T 2020 Phys. Rev. Lett. 124 127205 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|