Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076202    DOI: 10.1088/0256-307X/37/7/076202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure
Jie-Min Xu1,2, Shu-Yang Wang1,2, Wen-Jun Wang1,2, Yong-Hui Zhou1,2, Xu-Liang Chen1, Zhao-Rong Yang1, and Zhe Qu1*
1Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang et al  2020 Chin. Phys. Lett. 37 076202
Download: PDF(985KB)   PDF(mobile)(971KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a high-pressure study of van der Waals ferromagnetic metal Fe$_{3}$GeTe$_{2}$ through electrical transport and Raman scattering measurements in diamond anvil cells at pressures up to 22.4 GPa. Upon compression, the ferromagnetic transition temperature $T_{\rm c}$ manifested by a kink in resistance curve decreases monotonically and becomes undiscernable around $P_{\rm c} = 10$ GPa, indicative of suppression of the itinerant ferromagnetism. Meanwhile, by fitting the low temperature resistance to the Fermi liquid behavior of $R =R_{0} + AT^{2}$, we found that $R_{0}$ shows a cusp-like anomaly and the coefficient $A$ diverges around $P_{\rm c}$. These transport anomalies imply a tricritical point as commonly observed in itinerant ferromagnets under pressure. Unexpectedly, the Raman-active $E_{2g}$ and $A_{1g}$ modes soften remarkably after an initial weak hardening and the peak widths of both modes broaden evidently on approaching $P_{\rm c}$, followed by complete disappearance of both modes above this critical pressure. A possible underlying mechanism for such anomalous lattice softening near $P_{\rm c}$ is discussed.
Received: 10 March 2020      Published: 21 June 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.-e (Phonons in crystal lattices)  
  78.30.-j (Infrared and Raman spectra)  
  72.90.+y (Other topics in electronic transport in condensed matter)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. 11774352, U1832214, U19A2093, 11804344, U1632275, 11874362, 11704387, and U1932152), the Users with Excellence Project of Hefei Center CAS (Grant No. 2018HSC-UE012), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002), the Youth Innovation Promotion Association CAS (Grant No. 2020443).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie-Min Xu
Shu-Yang Wang
Wen-Jun Wang
Yong-Hui Zhou
Xu-Liang Chen
Zhao-Rong Yang
and Zhe Qu
[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Di. Zhong, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[2] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[3] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[4] Zhang X, Zhao Y, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001
[5] Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Cao L, Qu Z and Xiong Y 2017 Phys. Rev. B 96 134428
[6] Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T and Shi J 2019 Nano Lett. 19 4400
[7] Du L, Tang J, Zhao Y, Li X, Yang R, Hu X, Bai X, Wang X, Watanabe K, Taniguchi T, Shi D, Yu G, Bai X, Hasan T, Zhang G and Sun Z 2019 Adv. Funct. Mater. 29 1904734
[8] Li X, Zhang J, You L, Su Y and Tsymbal E Y 2019 Nano Lett. 19 5133
[9] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[10] Milosavljević A et al. 2019 Phys. Rev. B 99 214304
[11] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
[12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[13] Chen H Y, He C Y, Gao C X et al. 2007 Chin. Phys. Lett. 24 158
[14] Ren G Z, Jia X P, Zhu P W et al. 2005 Chin. Phys. Lett. 22 236
[15] Du Z X and Zheng H F 2008 Chin. Phys. Lett. 25 1875
[16] Jiang S, Liu J, Li X D et al. 2019 Chin. Phys. Lett. 36 046103
[17] Zhang W, Yao L D, You S J et al. 2007 Chin. Phys. Lett. 24 536
[18] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407
[19] Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, Sun Z, Shen W, Wei B, Hu W, Liu X, Huang L, Hu C, Wang Z, Jiang C, Yang S, Zhang Q M and Qu Z 2019 ACS Nano 13 11353
[20] Doiron-Leyraud N, Walker I R, Taillefer L, Steiner M J, Julian S R and Lonzarich G G 2003 Nature 425 595
[21] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[22] Matsuda M, Lin F K, Yu R, Cheng J G, Wu W, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q, Luo J L and Uwatoko Y 2018 Phys. Rev. X 8 031017
[23] Maczka M, Paraguassu W, Filho A G S, Freire P T C, Filho J M and Hanuza J 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 77 094137
[24] Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M and Guo Y 2020 J. Alloys Compd. 819 153368
[25] Taufour V, Aoki D, Knebel G and Flouquet J 2010 Phys. Rev. Lett. 105 217201
[26] Cochran W 1959 Adv. Phys. 9 387
[27] Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711
[28] Matsuura K, Cong P T, Zherlitsyn S, Wosnitza J, Abe N and Arima T 2020 Phys. Rev. Lett. 124 127205
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 076202
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 076202
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 076202
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 076202
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 076202
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 076202
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 076202
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 076202
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 076202
[10] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 076202
[11] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 076202
[12] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 076202
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 076202
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 076202
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 076202
Viewed
Full text


Abstract