Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076101    DOI: 10.1088/0256-307X/37/7/076101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Large Barocaloric Effect with High Pressure-Driving Efficiency in a Hexagonal MnNi$_{0.77}$Fe$_{0.23}$Ge Alloy
Qingqi Zeng1,2, Jianlei Shen1,2, Enke Liu1,3*, Xuekui Xi1, Wenhong Wang1,3, Guangheng Wu1, and Xixiang Zhang4
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Cite this article:   
Qingqi Zeng, Jianlei Shen, Enke Liu et al  2020 Chin. Phys. Lett. 37 076101
Download: PDF(853KB)   PDF(mobile)(838KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hydrostatic pressure is expected to be an effective knob to tune the magnetostructural phase transitions of hexagonal MM'X alloys (M and M' denote transition metals and X represents main group elements). We perform magnetization measurements under hydrostatic pressure on an MM'X martensitic MnNi$_{0.77}$Fe$_{0.23}$Ge alloy. The magnetostructural transition temperature can be efficiently tuned to lower temperatures by applying moderate pressures, with a giant shift rate of $-151$ K/GPa. A temperature span of 30 K is obtained under the pressure, within which a large magnetic entropy change of $-23$ J$\cdot$kg$^{-1}$K$^{-1}$ in a field change of 5 T is induced by the mechanical energy gain due to the large volume change. Meanwhile, a decoupling of structural and magnetic transitions is observed at low temperatures when the martensitic transition temperature is lower than the Curie temperature. These results show a multi-parameter tunable caloric effect that benefits the solid-state cooling.
Received: 22 April 2020      Published: 21 June 2020
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  63.70.+h (Statistical mechanics of lattice vibrations and displacive phase transitions)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51722106), the National Key R&D Program of China (Grant No. 2019YFA0704904), Users with Excellence Program of Hefei Science Center CAS (Grant No. 2019HSC-UE009), and Fujian Institute of Innovation, Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qingqi Zeng
Jianlei Shen
Enke Liu
Xuekui Xi
Wenhong Wang
Guangheng Wu
and Xixiang Zhang
[1] Liu E K et al. 2012 Nat. Commun. 3 873
[2] Sun A et al. 2015 Physica B 474 27
[3] Wei Z Y et al. 2015 Adv. Electron. Mater. 1 1500076
[4] Zhao Y Y et al. 2015 J. Am. Chem. Soc. 137 1746
[5] Xu K et al. 2017 Sci. Rep. 7 41675
[6] Chen L et al. 2018 Sci. Chin. Phys. Mech. Astron. 61 056121
[7] Franco V et al. 2018 Prog. Mater. Sci. 93 112
[8] Liu R S et al. 2020 Chin. Phys. Lett. 37 017501
[9] Li Y et al. 2016 APL Mater. 4 071101
[10] Nizioł S et al. 1983 J. Magn. Magn. Mater. 38 205
[11] Caron L, Trung N T and Brück E 2011 Phys. Rev. B 84 020414(R)
[12] Liu E K et al. 2010 Europhys. Lett. 91 17003
[13] Li Y et al. 2019 Acta Mater. 174 289
[14] Shen B G et al. 2009 Adv. Mater. 21 4545
[15] Moya X et al. 2013 Nat. Mater. 12 52
[16] Fujita A et al. 2006 Phys. Rev. B 73 104420
[17] Sun Y et al. 2006 Appl. Phys. Lett. 88 102505
[18] Mañosa L S et al. 2008 Appl. Phys. Lett. 92 012515
[19] Wada H, Matsuo S and Mitsuda A 2009 Phys. Rev. B 79 092407
[20] Kaštil J et al. 2015 J. Alloys Compd. 650 248
[21] Samanta T et al. 2015 Phys. Rev. B 91 020401(R)
[22] Khalid S, Sabino F P and Janotti A 2018 Phys. Rev. B 98 220102
[23] Liu F et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 48211
[24] You W et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 957411
[25] Jiang S et al. 2019 Chin. Phys. Lett. 36 046103
[26] Shang Y X et al. 2019 Chin. Phys. Lett. 36 086201
[27] Eiling A and Schilling J S 1981 J. Phys. F 11 623
[28] Johnson V 1975 Inorg. Chem. 14 1117
[29] Bazela W et al. 1976 Phys. Status Solidi A 38 721
[30] Fjellvåg H and Andresen A F 1985 J. Magn. Magn. Mater. 50 291
[31] Bażela W et al. 1981 Phys. Status Solidi A 64 367
[32] Liu E et al. 2011 IEEE Trans. Magn. 47 4041
[33] Nayak A K et al. 2009 J. Appl. Phys. 106 053901
[34] Taubel A et al. 2017 J. Phys. D 50 464005
[35] Kanomata T et al. 1995 J. Magn. Magn. Mater. 140–144 131
[36] Lloveras P et al. 2015 Nat. Commun. 6 8801
[37] Aznar A et al. 2019 Adv. Mater. 31 1903577
[38] Lloveras P et al. 2019 Nat. Commun. 10 1803
[39] Caron L et al. 2009 J. Magn. Magn. Mater. 321 3559
Related articles from Frontiers Journals
[1] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 076101
[2] Yufeng Li, Shichuan Sun, Yu He, and Heping Li. First-Principles Calculations about Elastic and Li$^{+}$ Transport Properties of Lithium Superoxides under High Pressure and High Temperature[J]. Chin. Phys. Lett., 2022, 39(2): 076101
[3] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 076101
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 076101
[5] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 076101
[6] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen[J]. Chin. Phys. Lett., 2020, 37(6): 076101
[7] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen *[J]. Chin. Phys. Lett., 0, (): 076101
[8] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 076101
[9] Chao Wang, Yun-Xian Liu, Xin Chen, Pin Lv, Hai-Rui Sun, Xiao-Bing Liu. Stable Compositions, Structures and Electronic Properties in K–Ga Systems Under Pressure[J]. Chin. Phys. Lett., 2020, 37(2): 076101
[10] Shu-Qing Jiang, Xue Yang, Xiao-Li Huang, Yan-Ping Huang, Xin Li, Tian Cui. The Unexpected Stability of Hydrazine Molecules in Hydrous Environment under Pressure[J]. Chin. Phys. Lett., 2020, 37(1): 076101
[11] Can Tian, Xiao-li Huang, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui. High-Pressure Behavior of Nano-Pt in Hydrogen Environment[J]. Chin. Phys. Lett., 2019, 36(10): 076101
[12] Shu-Peng Lyu, Jia Wang, Guo-Zhao Zhang, Yu-Fei Wang, Min Wang, Cai-Long Liu, Chun-Xiao Gao, Yong-Hao Han. Pressure-Induced Ionic-Electronic Transition in BiVO$_{4}$[J]. Chin. Phys. Lett., 2019, 36(7): 076101
[13] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 076101
[14] Yun-Peng Gao, Wan-Qing Dong, Gong Li, Ri-Ping Liu. Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement[J]. Chin. Phys. Lett., 2018, 35(3): 076101
[15] Hu Cheng, Yan-Chun Li, Gong Li, Xiao-Dong Li. Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations[J]. Chin. Phys. Lett., 2016, 33(09): 076101
Viewed
Full text


Abstract