ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique |
Shao-Long Chen1, Peng-Peng Zhou1,2, Shi-Yong Liang1,2, Wei Sun1, Huan-Yao Sun1, Yao Huang1, Hua Guan1*, Ke-Lin Gao1,3* |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
|
|
Cite this article: |
Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang et al 2020 Chin. Phys. Lett. 37 073201 |
|
|
Abstract Ion deceleration has played a critical role in ion-related research when the ions are produced in the form of a high-energy beam. We present a deceleration method combining electrostatic lens and ion trap technique, which can effectively decelerate ions to energy below the trapping potential of a typical ion trap. The experiments were performed on metastable $1s2s\,{}^{3}\!S_1\,{\rm Li}^{+}$ ions, and demonstrated that the kinetic energy could easily be reduced from $\sim$450 eV to a few eV, with the latter being confirmed using the Doppler-shifted fluorescence spectra.
|
|
Received: 31 March 2020
Published: 21 June 2020
|
|
PACS: |
32.70.-n
|
(Intensities and shapes of atomic spectral lines)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
07.75.+h
|
(Mass spectrometers)
|
|
|
Fund: Supported by the Scientific Instrument Developing Project of the National Natural Science Foundation of China (Grant Nos. 11934014, 11622434, and 11804373), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201552), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB21010400 and XDB21030300), CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and 2018364), and the Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040) |
|
|
[1] | Rajput J, Roy A, Kanjilal D, Ahuja R and Safvan C 2010 Rev. Sci. Instrum. 81 043301 |
[2] | Safvan C, Rajput J, Roy A, Kanjilal D and Ahuja R 2012 J. Phys.: Conf. Ser. 388 142006 |
[3] | Lebius H, Brenac A, Huber B, Maunoury L, Gustavo F and Cormier D 2003 Rev. Sci. Instrum. 74 2276 |
[4] | Stöhlker T, Mokler P, Bosch F et al. 2000 Phys. Rev. Lett. 85 3109 |
[5] | Lubinski G, Juhász Z, Morgenstern R and Hoekstra R 2001 Phys. Rev. Lett. 86 616 |
[6] | Schmöger L, Schwarz M, Baumann T M, Versolato O, Piest B, Pfeifer T, Ullrich J, Schmidt P O and Crespo López-Urrutia J 2015 Rev. Sci. Instrum. 86 103111 |
[7] | Micke P, Leopold T, King S, Benkler E, Spieß L, Schmoeger L, Schwarz M, López-Urrutia J C and Schmidt P 2020 Nature 578 60 |
[8] | Kozlov M, Safronova M, López-Urrutia J C and Schmidt P 2018 Rev. Mod. Phys. 90 045005 |
[9] | Clarke J J and van Wijngaarden W A 2003 Phys. Rev. A 67 012506 |
[10] | Holt R, Rosner S, Gaily T and Adam A 1980 Phys. Rev. A 22 1563 |
[11] | Fan B, Lurio A and Grischkowsky D 1978 Phys. Rev. Lett. 41 1460 |
[12] | Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K and zu Putlitz G 1981 Z. Phys. A 300 25 |
[13] | Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. Lett. 32 083701 |
[14] | Knight R and Prior M 1980 Phys. Rev. A 21 179 |
[15] | Hijazi H and Meyer F W 2013 Rev. Sci. Instrum. 84 033305 |
[16] | Chen S, Liang S, Sun W, Huang Y, Guan H and Gao K 2019 Rev. Sci. Instrum. 90 043112 |
[17] | Budker G I 1967 Sov. J. At. Energy 22 438 |
[18] | Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68 |
[19] | Sairam T, Bhatt P, Kumar A, Kumar H and Safvan C 2015 Phys. Plasmas 22 113503 |
[20] | Zhao Q, Zhai G and Kwok R 2006 Mater. Lett. 60 3084 |
[21] | Gordon M and Giapis K 2005 Rev. Sci. Instrum. 76 083302 |
[22] | Shimizu S, Sasaki N, Ogata S and Tsukakoshi O 1996 Rev. Sci. Instrum. 67 3664 |
[23] | Foo K, Lawson R, Feng X and Lau W 1991 J. Vac. Sci. Technol. A: Vac. Surf. Films 9 312 |
[24] | Hoffman E D and Stroobant V 2007 Mass Spectrometry: Principles Applications (Chichester: John Wiley & Sons) vol 1 |
[25] | Douglas D 1989 Can. J. Spectrosc. 34 38 |
[26] | Church D 1969 J. Appl. Phys. 40 3127 |
[27] | Su X, Lu W and Rabinowitz J D 2017 Anal. Chem. 89 5940 |
[28] | Bi Q R, Hou J J, Yang M, Shen Y, Qi P, Feng R H, Dai Z, Yan B P, Wang J W, Shi X J, Wu And Guo D A W Y 2017 J. Am. Soc. Mass Spectrom. 28 443 |
[29] | Rosen E P, Bokhart M T, Nazari M and Muddiman D C 2015 Anal. Chem. 87 10483 |
[30] | Aramendı́a M A, Marinas A, Marinas J M, Sánchez E, Urbano F J, Guillou C, Moreno Rojas J M, Moalem M and Rallo L 2010 Rapid Commun. Mass Spectrom. 24 1457 |
[31] | Yang H, Yang C and Sun T 2018 Rapid Commun. Mass Spectrom. 32 1353 |
[32] | Zhou X, Xiong C, Xu G, Liu H, Tang Y, Zhu Z, Chen R, Qiao H, Tseng Y H, Peng W P, Nie Z and Chen Y 2011 J. Am. Soc. Mass Spectrom. 22 386 |
[33] | Gravesen J and Willatzen M 2006 Physica B 371 112 |
[34] | Paul W 1990 Rev. Mod. Phys. 62 531 |
[35] | Wang Y, Huang Z, Jiang Y, Xiong X, Deng Y, Fang X and Xu W 2013 J. Mass Spectrom. 48 937 |
[36] | Hager J W 2002 Rapid Commun. Mass Spectrom. 16 512 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|