CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Ultrafine Mo-Doped Co$_{2}$P Nanorods Anchored on Reduced Graphene Oxide as Efficient Electrocatalyst for the Hydrogen Evolution Reaction |
Yi-Xuan Wang1, Qing Yang1, Chuang Liu1, Guang-Xia Wang2, Min Wu1, Hao Liu1, Yong-Ming Sui1, Xin-Yi Yang1** |
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 2School of Applied Physics and Materials, Wuyi University, Jiangmen 529020
|
|
Cite this article: |
Yi-Xuan Wang, Qing Yang, Chuang Liu et al 2020 Chin. Phys. Lett. 37 058201 |
|
|
Abstract One-dimensional (1D) transition metal phosphides (TMPs) with large specific surface areas, high charge transfer efficiency and excellent electrical conductivity have attracted significant attention in hydrogen evolution reaction (HER) as versatile and active catalysts. Herein, the sub-4 nm Mo-Co$_{2}$P ultrafine nanorods (NRs) anchored on reduced graphene oxide (rGO) were successfully synthesized by a colloidal mesostructured strategy. Electrochemical test results reveal that the Mo-Co$_{2}$P@rGO electrode exhibits superior activity with overpotentials of 204 mV and Tafel slope of 88 mV/dec for HER at 10 mA/cm$^{2}$, relative to the Co$_{2}$P@rGO electrode in 0.5 M H$_{2}$SO$_{4}$ solution. This improvement could be ascribed to the Mo doping, which results in more active sites, higher electrical conductivity and faster electron-transfer rates. This versatile strategy will provide a promising pathway for transition metal-doped compounds as an efficient catalyst.
|
|
Received: 27 November 2019
Published: 25 April 2020
|
|
PACS: |
82.45.Yz
|
(Nanostructured materials in electrochemistry)
|
|
78.67.Qa
|
(Nanorods)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11874027, 11774124, and 11504126) and the China Postdoctoral Science Foundation (Grant Nos. 2019T120233 and 2017M621198). |
|
|
[1] | Chen G and Wang P S 2018 Chin. Phys. Lett. 35 127701 | [2] | Zhang Z H, Liu H M, Xiong Y Q, Xu W J and Tang Y H 2007 Chin. Phys. Lett. 24 543 | [3] | Yang H P, Bao H H, Han L L, Yuan W J, Luo J and Zhu J 2018 Chin. Phys. Lett. 35 127301 | [4] | Shang C S, Guo Y X and Wang E 2018 Nano Res. 11 4348 | [5] | Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Cui Y, Wang X, Dang Z M and Lei Q Q 2019 Nano Energy 56 138 | [6] | Song M J, He Y, Zhang M M, Zheng X R, Wang Y, Zhang J F, Han X P, Zhong C, Hu W B and Deng Y D 2018 J. Power Sources 402 345 | [7] | Pan Y, Liu Y Q, Lin Y and Liu C G 2016 ACS Appl. Mater. & Interfaces 8 13890 | [8] | Zhao X, He D W, Wang Y S and Fu C 2018 Chin. Phys. B 27 068103 | [9] | Zhou Q S, Feng J R, Peng X W, Zhong L X and Sun R C 2020 J. Energy Chem. 45 45 | [10] | Zhu J W and Ni Y H 2018 CrystEngComm 20 3344 | [11] | Oyama S T, Gott T, Zhao H Y and Lee Y K 2009 Catal. Today 143 94 | [12] | Wang J H, Cui W, Liu Q, Xing Z, Asiri A M and Sun X P 2016 Adv. Mater. 28 215 | [13] | Zhang F, Wei M H, Sui J, Jin C, Luo Y, Bie S Y and Yang R Z 2018 J. Alloys Compd. 750 655 | [14] | Bi L L, Gao X P, Zhang L L, Wang D J, Zou X X and Xie T F 2018 ChemSusChem 11 276 | [15] | Popczun E J, Read C G, Roske C W, Lewis N S and Schaak R E 2014 Angew. Chem. Int. Ed. 53 5427 | [16] | Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P and Chen L 2017 ACS Catal. 7 98 | [17] | Guan C, Xiao W, Wu H J, Liu X M, Zang W J, Zhang H, Ding J, Feng Y P, Pennycook S J and Wang J 2018 Nano Energy 48 73 | [18] | Tang C, Zhang R, Lu W B, He L B, Jiang X, Asiri A M and Sun X P 2017 Adv. Mater. 29 1602441 | [19] | Jin Z Y, Li P P, Xiao D 2016 Green Chem. 18 1459 | [20] | Xu K, Wang F M, Wang Z X, Zhan X Y, Wang Q S, Cheng Z Z, Safdar M and He J 2014 ACS Nano 8 8468 | [21] | Cao H S, Xie Y, Wang H L, Xiao F, Wu A P, Li L, Xu Z K, Xiong N and Pan K 2018 Electrochim. Acta 259 830 | [22] | Miao Y E, Li F, Zhou Y, Lai F, Lu H Y and Liu T X 2017 Nanoscale 9 16313 | [23] | Liu X H, Wei B, Su R, Zhao C G, Dai D M, Ma X and Xu L L 2019 Energy Technol. 7 1900021 | [24] | Liu S, Guo X Y, Li M R, Zhang W H, Liu X Y and Li C 2011 Angew. Chem. Int. Ed. 50 12050 | [25] | Ma L B, Shen X P, Zhou H, Zhu G X, Ji Z Y and Chen K M 2015 J. Mater. Chem. A 3 5337 | [26] | Yang X L, Lu A Y, Zhu Y H, Hedhili M N, Min S X, Huang K W, Han Y and Li L J 2015 Nano Energy 15 634 | [27] | Zhang L L, Yan S, Jiang S, Yang K, Wang H, He S M, Liang D X, Zhang L, He Y, Lan X Y, Mao C W, Wang J, Jiang H, Zheng Y, Dong Z H, Zeng L Y and Li A G 2015 Nucl. Sci. Tech. 26 060101 | [28] | Wang Y, Zhang Z Y, Wang G X, Yang X Y, Sui Y M, Du F and Zou B 2019 Nanoscale Horiz. 4 1394 | [29] | Kim J K, Park S K and Kang Y C 2018 J. Alloys Compd. 763 652 | [30] | Zeng M and Li Y G 2015 J. Mater. Chem. A 3 14942 | [31] | Pan Y, Sun K A, Lin Y, Cao X, Cheng Y S, Liu S J, Zeng L Y, Cheong W C, Zhao D, Wu K L, Liu Z, Liu Y Q, Wang D S, Peng Q, Chen C and Li Y D 2019 Nano Energy 56 411 | [32] | Shi Y M and Zhang B 2016 Chem. Soc. Rev. 45 1529 | [33] | Zhang X, Wu D F and Cheng D J 2017 Electrochim. Acta 246 572 | [34] | Zhuang M H, Qu X W, Dou Y B, Zhang L L, Zhang Q C, Wu R Z, Ding Y, Shao M H and Luo Z T 2016 Nano Lett. 16 4691 | [35] | Liu Y Y, Zhu Y H, Shen J H, Huang J F, Yang X L and Li C Z 2018 Nanoscale 10 2603 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|