Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 058501    DOI: 10.1088/0256-307X/37/5/058501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers
Si-Wei Mao1,2, Jun Lu3, Long Yang4, Xue-Zhong Ruan4, Hai-Long Wang1,2, Da-Hai Wei1,2,3, Yong-Bing Xu4, Jian-Hua Zhao1,2,3**
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190
3Beijing Academy of Quantum Information Science, Beijing 100193
4Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
Si-Wei Mao, Jun Lu, Long Yang et al  2020 Chin. Phys. Lett. 37 058501
Download: PDF(1189KB)   PDF(mobile)(1178KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Perpendicularly magnetized $L1_{0}$-MnAl thin films with Co$_{2}$MnSi buffer layers were prepared on GaAs (001) substrates by molecular-beam epitaxy (MBE). The samples with high crystalline quality show a maximum uniaxial perpendicular magnetic anisotropy constant of $1.4\times 10^{7}$ erg/cm$^{3}$. Ultrafast spin dynamics with a magnetization precession frequency up to 200 GHz was investigated by using time-resolved magneto-optical Kerr effect (TRMOKE) measurements, from which the Gilbert damping constant $\alpha$ of epitaxial $L1_{0}$-MnAl thin films is evaluated to be less than 0.0175. This work provides an important reference for analyzing the current-induced magnetization switching process in MnAl-based spintronic devices.
Received: 17 January 2020      Published: 25 April 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFB0407601), the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC015 and XDPB12), and the National Natural Science Foundation of China (Grant Nos. 11834013, 11874349, and 11774339).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/058501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/058501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Wei Mao
Jun Lu
Long Yang
Xue-Zhong Ruan
Hai-Long Wang
Da-Hai Wei
Yong-Bing Xu
Jian-Hua Zhao
[1]Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H and Zheng H Z 2012 Adv. Mater. 24 2547
[2]Winterlik J, Balke B, Fecher G H and Felser C 2008 Phys. Rev. B 77 054406
[3]Zhu L J and Zhao J H 2013 Appl. Phys. A 111 379
[4]Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504
[5]Kurt H, Rode K, Venkatesan M, Stamenov P and Coey J M D 2011 Phys. Rev. B 83 020405(R)
[6]Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J and Lee J G 2010 J. Appl. Phys. 107 09A731
[7]Edstrom A, Chico J, Jakobsson A, Bergman A and Rusz J 2014 Phys. Rev. B 90 014402
[8]Zeng Q, Baker I, Cui J B and Yan Z C 2007 J. Magn. Magn. Mater. 308 214
[9]Sands T, Harbison J P, Leadbeater M L, Allen S J, Hull G W, Ramesh R and Keramidas V G 1990 Appl. Phys. Lett. 57 2609
[10]Oogane M, Watanabe K, Saruyama H, Hosoda M, Shahnaz P, Kurimoto Y, Kubota M and Ando Y 2017 Jpn. J. Appl. Phys. 56 0802A2
[11]Nie S H, Zhu L J, Lu J, Pan D, Wang H L, Yu X Z, Xiao J X and Zhao J H 2013 Appl. Phys. Lett. 102 152405
[12]Ma Q L, Kubota T, Mizukami S, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2012 Appl. Phys. Lett. 101 032402
[13]Kubota T, Mizukami S, Watanabe D, Wu F, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 J. Appl. Phys. 110 013915
[14]Suzuki K Z, Miura Y, Ranjbar R, Sugihara A and Mizukami S 2018 J. Phys. D 51 235001
[15]Saruyama H, Oogane M, Kurimoto Yuta, Naganuma H and Ando Y 2013 Jpn. J. Appl. Phys. 52 063003
[16]Mao S W, Lu J, Wang H L, Zhao X P, Wei D H and Zhao J H 2019 J. Phys. D 52 405002
[17]Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
[18]Wang K L, Alzate J G and Amiri P K 2013 J. Phys. D 46 074003
[19]Khvalkovskiy A V, ApalKov D, Watts S, Chepulskii R, Beach R S, Ong A, Tang X, Driskill-Smith A, Butler W H, Visscher P B, Lottis D, Chen E, Nikitin V and Krounbi M 2013 J. Phys. D 46 139601
[20]Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[21]Mizukami S, Iihama S, Sakaki Y, Sugihara A, Ranjbar R and Suzuki K Z 2016 J. Appl. Phys. 120 142102
[22]Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[23]Mizukami S, Suzuki K Z and Miura Y 2019 Appl. Phys. Express 12 043003
[24]Harbison J P, Sands T, Ramesh R, Florez L T, Wilkens B J and Keramidas V G 1991 J. Cryst. Growth 111 978
[25]Bland J A C, Padgett M J, Butcher R J and Bett N 1989 J. Phys. E 22 308
[26]Qiao S, Nie S H, Zhao J H and Zhang X H 2014 Appl. Phys. Lett. 105 172406
[27]Mizukami S, Abe H, Watanabe D, Oogane M, Ando Y and Miyazaki T 2008 Appl. Phys. Express 1 121301
[28]Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580
[29]Mizukami S, Watanabe D, Kubota T, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2010 Appl. Phys. Express 3 123001
[30]Serrano-Guisan S, Rott K, Reiss G and Schumacher H W 2008 J. Phys. D 41 164015
[31]Beaujour J M, Ravelosona D, Tudosa I, Fullerton E E and Kent A D 2009 Phys. Rev. B 80 180415(R)
[32]Devolder T, Ducrot P H, Adam J P, Barisic I, Vernier N, Kim J V, Ockert B and Ravelosona D 2013 Appl. Phys. Lett. 102 022407
[33]Iihama S, Mizukami S, Naganuma H, Oogane M, Ando Y and Miyazaki T 2014 Phys. Rev. B 89 174416
Related articles from Frontiers Journals
[1] Zhaonian Jin, Minhang Song, Henan Fang, Lin Chen, Jiangwei Chen, and Zhikuo Tao. Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings[J]. Chin. Phys. Lett., 2022, 39(10): 058501
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 058501
[3] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 058501
[4] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 058501
[5] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 058501
[6] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 058501
[7] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 058501
[8] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 058501
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 058501
[10] Zheng-Wei Xie, Ling Li. Spin-Polarization in Quasi-Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2017, 34(5): 058501
[11] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 058501
[12] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 058501
[13] REN Jun-Feng, YUAN Xiao-Bo, HU Gui-Chao. Spin Polarization Properties of Na Doped Meridianal Tris(8-Hydroxyquinoline) Aluminum Studied by First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(04): 058501
[14] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 058501
[15] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 058501
Viewed
Full text


Abstract