CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers |
Si-Wei Mao1,2, Jun Lu3, Long Yang4, Xue-Zhong Ruan4, Hai-Long Wang1,2, Da-Hai Wei1,2,3, Yong-Bing Xu4, Jian-Hua Zhao1,2,3** |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190 3Beijing Academy of Quantum Information Science, Beijing 100193 4Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Si-Wei Mao, Jun Lu, Long Yang et al 2020 Chin. Phys. Lett. 37 058501 |
|
|
Abstract Perpendicularly magnetized $L1_{0}$-MnAl thin films with Co$_{2}$MnSi buffer layers were prepared on GaAs (001) substrates by molecular-beam epitaxy (MBE). The samples with high crystalline quality show a maximum uniaxial perpendicular magnetic anisotropy constant of $1.4\times 10^{7}$ erg/cm$^{3}$. Ultrafast spin dynamics with a magnetization precession frequency up to 200 GHz was investigated by using time-resolved magneto-optical Kerr effect (TRMOKE) measurements, from which the Gilbert damping constant $\alpha$ of epitaxial $L1_{0}$-MnAl thin films is evaluated to be less than 0.0175. This work provides an important reference for analyzing the current-induced magnetization switching process in MnAl-based spintronic devices.
|
|
Received: 17 January 2020
Published: 25 April 2020
|
|
PACS: |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
46.40.Ff
|
(Resonance, damping, and dynamic stability)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFB0407601), the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC015 and XDPB12), and the National Natural Science Foundation of China (Grant Nos. 11834013, 11874349, and 11774339). |
|
|
[1] | Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H and Zheng H Z 2012 Adv. Mater. 24 2547 | [2] | Winterlik J, Balke B, Fecher G H and Felser C 2008 Phys. Rev. B 77 054406 | [3] | Zhu L J and Zhao J H 2013 Appl. Phys. A 111 379 | [4] | Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504 | [5] | Kurt H, Rode K, Venkatesan M, Stamenov P and Coey J M D 2011 Phys. Rev. B 83 020405(R) | [6] | Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J and Lee J G 2010 J. Appl. Phys. 107 09A731 | [7] | Edstrom A, Chico J, Jakobsson A, Bergman A and Rusz J 2014 Phys. Rev. B 90 014402 | [8] | Zeng Q, Baker I, Cui J B and Yan Z C 2007 J. Magn. Magn. Mater. 308 214 | [9] | Sands T, Harbison J P, Leadbeater M L, Allen S J, Hull G W, Ramesh R and Keramidas V G 1990 Appl. Phys. Lett. 57 2609 | [10] | Oogane M, Watanabe K, Saruyama H, Hosoda M, Shahnaz P, Kurimoto Y, Kubota M and Ando Y 2017 Jpn. J. Appl. Phys. 56 0802A2 | [11] | Nie S H, Zhu L J, Lu J, Pan D, Wang H L, Yu X Z, Xiao J X and Zhao J H 2013 Appl. Phys. Lett. 102 152405 | [12] | Ma Q L, Kubota T, Mizukami S, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2012 Appl. Phys. Lett. 101 032402 | [13] | Kubota T, Mizukami S, Watanabe D, Wu F, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 J. Appl. Phys. 110 013915 | [14] | Suzuki K Z, Miura Y, Ranjbar R, Sugihara A and Mizukami S 2018 J. Phys. D 51 235001 | [15] | Saruyama H, Oogane M, Kurimoto Yuta, Naganuma H and Ando Y 2013 Jpn. J. Appl. Phys. 52 063003 | [16] | Mao S W, Lu J, Wang H L, Zhao X P, Wei D H and Zhao J H 2019 J. Phys. D 52 405002 | [17] | Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187 | [18] | Wang K L, Alzate J G and Amiri P K 2013 J. Phys. D 46 074003 | [19] | Khvalkovskiy A V, ApalKov D, Watts S, Chepulskii R, Beach R S, Ong A, Tang X, Driskill-Smith A, Butler W H, Visscher P B, Lottis D, Chen E, Nikitin V and Krounbi M 2013 J. Phys. D 46 139601 | [20] | Gilbert T L 2004 IEEE Trans. Magn. 40 3443 | [21] | Mizukami S, Iihama S, Sakaki Y, Sugihara A, Ranjbar R and Suzuki K Z 2016 J. Appl. Phys. 120 142102 | [22] | Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Phys. Rev. Lett. 106 117201 | [23] | Mizukami S, Suzuki K Z and Miura Y 2019 Appl. Phys. Express 12 043003 | [24] | Harbison J P, Sands T, Ramesh R, Florez L T, Wilkens B J and Keramidas V G 1991 J. Cryst. Growth 111 978 | [25] | Bland J A C, Padgett M J, Butcher R J and Bett N 1989 J. Phys. E 22 308 | [26] | Qiao S, Nie S H, Zhao J H and Zhang X H 2014 Appl. Phys. Lett. 105 172406 | [27] | Mizukami S, Abe H, Watanabe D, Oogane M, Ando Y and Miyazaki T 2008 Appl. Phys. Express 1 121301 | [28] | Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580 | [29] | Mizukami S, Watanabe D, Kubota T, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2010 Appl. Phys. Express 3 123001 | [30] | Serrano-Guisan S, Rott K, Reiss G and Schumacher H W 2008 J. Phys. D 41 164015 | [31] | Beaujour J M, Ravelosona D, Tudosa I, Fullerton E E and Kent A D 2009 Phys. Rev. B 80 180415(R) | [32] | Devolder T, Ducrot P H, Adam J P, Barisic I, Vernier N, Kim J V, Ockert B and Ravelosona D 2013 Appl. Phys. Lett. 102 022407 | [33] | Iihama S, Mizukami S, Naganuma H, Oogane M, Ando Y and Miyazaki T 2014 Phys. Rev. B 89 174416 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|