Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 058101    DOI: 10.1088/0256-307X/37/5/058101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Synthesis of Polycrystalline Diamond Compact with Selenium: Discovery of a New Se–C Compound
Wen-Dan Wang1**, Ao Li1, Guo-Heng Xu2, Pei Wang3, Yue-Gao Liu4, Li-Ping Wang3**
1School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031
2Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055
4CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000
Cite this article:   
Wen-Dan Wang, Ao Li, Guo-Heng Xu et al  2020 Chin. Phys. Lett. 37 058101
Download: PDF(1123KB)   PDF(mobile)(1113KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sintering of polycrystalline diamond with selenium was investigated under pressure of 6.5–10.5 GPa at a constant temperature of 1850 $^{\circ}\!$C. A new carbon-selenium compound with a most plausible chemical formula of SeC and a WC-type hexagonal structure (space group $P\bar{6}m2$) has been discovered in the recovered samples sintered at 10.5 GPa and 1850 $^{\circ}\!$C. Refined lattice parameters are as follows: $a = 2.9277(4)$ Å, $c = 2.8620(4)$ Å, $V = 21.245(4)$ Å$^{3}$. The diamond compacts hot-pressed at 10.5 GPa have excellent mechanical properties with a Vickers hardness of about 68 GPa at a loading force of 19.6 N. Diamond intergrowths observed in these samples may have benefited from the catalytic effects of Se/SeC on the nucleation and crystal growth of diamond.
Received: 20 February 2020      Published: 25 April 2020
PACS:  81.05.Uw  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  61.66.Fn (Inorganic compounds)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51402245), the Fundamental Research Funds for the Central Universities of China (Grant No. 2682016CX062), the China Scholarship Council (Grant No. 201707005071), the Shenzhen Peacock Plan (Grant No. KQTD2016053019134356), and the Guangdong Innovative & Entrepreneurial Research Team Program (Grant No. 2016ZT06C279). HPCAT operations are supported by US DOE/NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/058101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/058101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Dan Wang
Ao Li
Guo-Heng Xu
Pei Wang
Yue-Gao Liu
Li-Ping Wang
[1]Bundy F P, Hall H T, Strong H M and Wentorf Jun R H 1955 Nature 176 51
[2]Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Ralchenko V G 2015 Handbook of Crystal Growth (Boston: Elsevier) chap 17 p 671
[3]Eversole W G 1960 US Patent No. 3030187
[4]Bovenkerk H P, Bundy F P, Hall H T, Strong H M and Wentorf R H 1959 Nature 184 1094
[5]Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337
[6]Bundy F P, Bovenkerk H P, Strong H M and Jr. R H W 1961 J. Chem. Phys. 35 383
[7]Kanda H, Akaishi M and Yamaoka S 1994 Appl. Phys. Lett. 65 784
[8]Fagan A J and Luth R W 2011 Contrib. Mineral. Petrol. 161 229
[9]Palyanov Y N, Kupriyanov I N, Borzdov Y M and Surovtsev N V 2015 Sci. Rep. 5 14789
[10]Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Cryst. Growth & Des. 16 3510
[11]Akaishi M, Kanda H and Yamaoka S 1993 Science 259 1592
[12]Palyanov Y N, Kupriyanov I N, Sokol A G, Khokhryakov A F and Borzdov Y M 2011 Cryst. Growth & Des. 11 2599
[13]Sato K and Katsura T 2001 J. Cryst. Growth 223 189
[14]Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A and Efremov A 2002 Diamond Relat. Mater. 11 1863
[15]Minoru A, Hisao K and Shinobu Y 1990 Jpn. J. Appl. Phys. 29 L1172
[16]Wang Y and Kanda H 1998 Diamond Relat. Mater. 7 57
[17]Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F and Sobolev N V 1999 Nature 400 417
[18]Sokol A, Palyanov Y, Pal'yanova G and Tomilenko A 2004 Geochem. Int. 42 830
[19]Arima M, Nakayama K, Akaishi M, Yamaoka S and Kanda H 1993 Geology 21 968
[20]Akaishi M and Yamaoka S 2000 J. Cryst. Growth 209 999
[21]Sokol A G, Pal'yanov Y N, Pal'yanova G A, Khokhryakov A F and Borzdov Y M 2001 Diamond Relat. Mater. 10 2131
[22]Yamaoka S, Kumar M D S, Kanda H and Akaishi M 2002 Diamond Relat. Mater. 11 1496
[23]Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K and Liu B 2020 Phys. Rev. Lett. 124 065701
[24]Chen M, Shu J, Xie X, Tan D and Mao H K 2018 Proc. Natl. Acad. Sci. USA 115 2676
[25]Akaishi M, Yamaoka S, Ueda F and Ohashi T 1996 Diamond Relat. Mater. 5 2
[26]Kovalenko T V and Ivakhnenko S A 2013 J. Superhard Mater. 35 131
[27]Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Borzdov Y M 2017 CrystEngComm 19 4459
[28]Palyanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F and Nechaev D V 2015 CrystEngComm 17 4928
[29]Wang J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Han F, Yu K P and Ma H A 2019 Chin. Phys. Lett. 36 046101
[30]Lv S J, Hong S M, Yuan C S and Hu Y 2009 Appl. Phys. Lett. 95 242105
[31]Lv S J, Luo J T, Su L, Hu Y, Yuan C S and Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese)
[32]Toby B 2001 J. Appl. Crystallogr. 34 210
[33]Powell B and Torrie B 1983 Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39 963
[34]Brazhkin V V, Popova S V and Voloshin R N 1999 Physica B 265 64
[35]Xu B and Tian Y 2015 J. Phys. Chem. C 119 5633
[36]Dub S, Lytvyn P, Strelchuk V, Nikolenko A, Stubrov Y, Petrusha I, Taniguchi T and Ivakhnenko S 2017 Crystals 7 369
[37]Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49
[38]Yu H, Li S and Hu E 1994 Diamond Relat. Mater. 3 222
Related articles from Frontiers Journals
[1] HUO Qiu-Hong, WANG Ru-Zhi, YAN Hui. Electron Transport through Magnetic Superlattices with Asymmetric Double-Barrier Units in Graphene[J]. Chin. Phys. Lett., 2012, 29(7): 058101
[2] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 058101
[3] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 058101
[4] FU Di, XIE Dan, ZHANG Chen-Hui, ZHANG Di, NIU Jie-Bin, QIAN He, LIU Li-Tian,. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications[J]. Chin. Phys. Lett., 2010, 27(9): 058101
[5] LEI Tong, WANG Xiao-Ping, WANG Li-Jun, LV Cheng-Rui, ZHANG Shi, ZHU Yu-Zhuan. Electroluminescence from Multilayered Diamond/CeF3/SiO2 Films[J]. Chin. Phys. Lett., 2010, 27(4): 058101
[6] ZHOU Sheng-Guo, ZANG Chuan-Yi, MA Hong-An, HU Qiang, LI Xiao-Lei, LI Shang-Sheng, ZHANG He-Min, JIA Xiao-Peng,. HPHT Synthesis of Different Shape Coarse-Grain Diamond Single Crystals[J]. Chin. Phys. Lett., 2009, 26(4): 058101
[7] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 058101
[8] LIU Xiao-Bing, JIA Xiao-Peng, MA Hong-An, HAN Wei, GUO Xin-Kai, JIA Hong-Sheng. HPHT Synthesis of High-Quality Diamond Single Crystals with Micron Grain Size[J]. Chin. Phys. Lett., 2009, 26(3): 058101
[9] TIAN Yu, JIA Xiao-Peng, ZANG Chuan-Yi, LI Rui, LI Shang-Sheng, XIAO Hong-Yu, ZHANG Ya-Fei, HUANG Guo-Feng, HAN Qi-Gang, MA Li-Qiu, LI Yong, CHEN Xiao-Zhou, ZHANG Cong, MA Hong-An. Finite Element Analysis of Convection in Growth Cell for Diamond Growth Using Ni-Based Solvent[J]. Chin. Phys. Lett., 2009, 26(2): 058101
[10] G. G. Fedoruk, O. N. Poklonskaya. On Room-Temperature Inversion of EPR Signals of P1 Centre in Synthetic Diamond[J]. Chin. Phys. Lett., 2009, 26(1): 058101
[11] FU Yun-Chong, JIN Yun-Fan, YAO Cun-Feng, ZHANG Chong-Hong. Raman Spectroscopy of Irradiation Effect in Three Carbon Allotropes Induced by Low Energy B Ions[J]. Chin. Phys. Lett., 2009, 26(1): 058101
[12] LI Shang-Sheng, JIA Xiao-Peng, ZANG Chuan-Yi, TIAN Yu, ZHANG Ya-Fei, XIAO Hong-Yu, HUANG Guo-Feng, MA Li-Qiu, LI Yong, LI Xiao-Lei, MA Hong-An. Effects of Al and Ti/Cu on Synthesis of Type-IIa Diamond Crystals in Ni70Mn25Co5-C System at HPHT[J]. Chin. Phys. Lett., 2008, 25(10): 058101
[13] LI Hong-Dong, ZOU Guang-Tian, WANG Qi-Liang, CHENG Shao-Heng, LI Bo, Lü Jian-Nan, Lü Xian-Yi, JIN Zeng-Sun. High-Rate Growth and Nitrogen Distribution in Homoepitaxial Chemical Vapour Deposited Single-crystal Diamond[J]. Chin. Phys. Lett., 2008, 25(5): 058101
[14] XIAO Hong-Yu, JIA Xiao-Peng, ZANG Chuan-Yi, LI Shang-Sheng, TIAN Yu, ZHANG Ya-Fei, HUANG Guo-Feng, MA Li-Qiu, MA Hong-An. Dependence of Crystal Quality and β Value on Synthesis Temperature in Growing Gem Diamond Crystals[J]. Chin. Phys. Lett., 2008, 25(4): 058101
[15] LIANG Zhong-Zhu, JIA Xiao-Peng, LIANG Jing-Qiu. Formation of Mixture of A and C Centres in Diamond Synthesized with Fe90Ni10-C-High-Content Additive NaN3 by HPHT[J]. Chin. Phys. Lett., 2007, 24(12): 058101
Viewed
Full text


Abstract