Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 057801    DOI: 10.1088/0256-307X/37/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light
Shuai-Meng Wang, Xiao-Hong Sun**, De-Li Chen, Fan Wu
Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052
Cite this article:   
Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen et al  2020 Chin. Phys. Lett. 37 057801
Download: PDF(702KB)   PDF(mobile)(697KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Compared with the metal antenna metasurface, the dielectric metasurface has better optical characteristics and smaller ohmic loss in the optical band, which makes it superior. An elliptical cylindrical nanostructured antenna is designed using GaP with excellent transmission characteristics in the visible band. This structure has a transmission efficiency of up to 0.96 in the visible light band. Based on the Pancharatnam–Berry (PB) phase control principle, the metasurface structure composed of the antennas is studied, and its abnormal refraction metasurface and focusing meta-lens are analyzed. It is a highly efficient sub-wavelength structure, and promises great potential for the applications of circular polarization optics, nanolithography, dense storage and biophotonics.
Received: 10 February 2020      Published: 25 April 2020
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  42.70.-a (Optical materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Supported by the Science and Technology Major Project of Henan Province, China (Grant No. 161100210200).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/057801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai-Meng Wang
Xiao-Hong Sun
De-Li Chen
Fan Wu
[1]Wu P C, Tsai W Y, Chen W T et al 2017 Nano Lett. 17 445
[2]Yu N F, Aieta F, Genevet P et al 2012 Nano Lett. 12 6328
[3]Huang L L, Chen X Z, Mühlenbernd H et al 2013 Nat. Commun. 4 2808
[4]Ni X J, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807
[5]Zheng G X, Mühlenbernd H, Kenney M et al 2015 Nat. Nanotechnol. 10 308
[6]Lin J, Mueller J B, Wang Q et al 2013 Science 340 331
[7]Aieta F, Genevet P, Kats M A et al 2012 Nano Lett. 12 1702
[8]Mohammadreza K, Francesco A, Pritpal K et al 2015 Nano Lett. 15 5358
[9]Zhang Z J, Cui Z C, Liu Y et al 2018 OSA Continuum 1 882
[10]Bomzon Z, Biener G, Kleiner V et al 2002 Opt. Lett. 27 285
[11]Chen W T, Török Peter, Foreman M R et al 2016 Nanotechnology 27 224002
[12]Yu N F and Capasso F 2014 Nat. Mater. 13 139
[13]Knight M W, Liu L F, Wang Y M et al 2012 Nano Lett. 12 6000
[14]Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801
[15]Jalil S A, Akram M, Yoon G et al 2017 Chin. Phys. Lett. 34 088102
[16]Yu N F, Genevet P, Kats M A et al 2011 Science 334 333
[17]Sun S L, Yang K Y, Wang C M et al 2012 Nano Lett. 12 6223
[18]Ni X, Ishii S, Kildishev A V et al 2013 Light: Sci. & Appl. 2 e72
[19]Pors A, Nielsen M G, Eriksen R L et al 2013 Nano Lett. 13 829
[20]Khorasaninejad M, Zhuit A Y, Roques-Carme C et al 2016 Nano Lett. 16 7229
[21]Arbabi A, Arbabi E, Kamali S M et al 2016 Nat. Commun. 7 13682
[22]Li L L, Li F and Cui T J 2014 Opt. Express 22 18688
[23]Ji R, Hua Y N, Chen K J et al 2019 Plasmonics 14 165
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 057801
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 057801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 057801
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 057801
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 057801
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 057801
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 057801
[8] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 057801
[9] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 057801
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 057801
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 057801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 057801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 057801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 057801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 057801
Viewed
Full text


Abstract