CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light |
Shuai-Meng Wang, Xiao-Hong Sun**, De-Li Chen, Fan Wu |
Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052
|
|
Cite this article: |
Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen et al 2020 Chin. Phys. Lett. 37 057801 |
|
|
Abstract Compared with the metal antenna metasurface, the dielectric metasurface has better optical characteristics and smaller ohmic loss in the optical band, which makes it superior. An elliptical cylindrical nanostructured antenna is designed using GaP with excellent transmission characteristics in the visible band. This structure has a transmission efficiency of up to 0.96 in the visible light band. Based on the Pancharatnam–Berry (PB) phase control principle, the metasurface structure composed of the antennas is studied, and its abnormal refraction metasurface and focusing meta-lens are analyzed. It is a highly efficient sub-wavelength structure, and promises great potential for the applications of circular polarization optics, nanolithography, dense storage and biophotonics.
|
|
Received: 10 February 2020
Published: 25 April 2020
|
|
PACS: |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
81.40.-z
|
(Treatment of materials and its effects on microstructure, nanostructure, And properties)
|
|
42.70.-a
|
(Optical materials)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
|
Fund: Supported by the Science and Technology Major Project of Henan Province, China (Grant No. 161100210200). |
|
|
[1] | Wu P C, Tsai W Y, Chen W T et al 2017 Nano Lett. 17 445 | [2] | Yu N F, Aieta F, Genevet P et al 2012 Nano Lett. 12 6328 | [3] | Huang L L, Chen X Z, Mühlenbernd H et al 2013 Nat. Commun. 4 2808 | [4] | Ni X J, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807 | [5] | Zheng G X, Mühlenbernd H, Kenney M et al 2015 Nat. Nanotechnol. 10 308 | [6] | Lin J, Mueller J B, Wang Q et al 2013 Science 340 331 | [7] | Aieta F, Genevet P, Kats M A et al 2012 Nano Lett. 12 1702 | [8] | Mohammadreza K, Francesco A, Pritpal K et al 2015 Nano Lett. 15 5358 | [9] | Zhang Z J, Cui Z C, Liu Y et al 2018 OSA Continuum 1 882 | [10] | Bomzon Z, Biener G, Kleiner V et al 2002 Opt. Lett. 27 285 | [11] | Chen W T, Török Peter, Foreman M R et al 2016 Nanotechnology 27 224002 | [12] | Yu N F and Capasso F 2014 Nat. Mater. 13 139 | [13] | Knight M W, Liu L F, Wang Y M et al 2012 Nano Lett. 12 6000 | [14] | Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801 | [15] | Jalil S A, Akram M, Yoon G et al 2017 Chin. Phys. Lett. 34 088102 | [16] | Yu N F, Genevet P, Kats M A et al 2011 Science 334 333 | [17] | Sun S L, Yang K Y, Wang C M et al 2012 Nano Lett. 12 6223 | [18] | Ni X, Ishii S, Kildishev A V et al 2013 Light: Sci. & Appl. 2 e72 | [19] | Pors A, Nielsen M G, Eriksen R L et al 2013 Nano Lett. 13 829 | [20] | Khorasaninejad M, Zhuit A Y, Roques-Carme C et al 2016 Nano Lett. 16 7229 | [21] | Arbabi A, Arbabi E, Kamali S M et al 2016 Nat. Commun. 7 13682 | [22] | Li L L, Li F and Cui T J 2014 Opt. Express 22 18688 | [23] | Ji R, Hua Y N, Chen K J et al 2019 Plasmonics 14 165 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|