CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Bubble Formation in Apatite Structures by He-Ion Irradiation at High Temperature |
Cai-Yu Wu1, Ting-Ting Gao2, Zhi-Wei Lin1, Yue Zhang3, Huan-Huan He1, Jian Zhang1** |
1College of Energy, Xiamen University, Xiamen 361005 2Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 3College of Physical Science and Technology, Xiamen University, Xiamen 361005
|
|
Cite this article: |
Cai-Yu Wu, Ting-Ting Gao, Zhi-Wei Lin et al 2020 Chin. Phys. Lett. 37 056101 |
|
|
Abstract Apatite ceramics Ca$_{10}$(PO$_{4})_{6}$$X_{2}$ ($X=$F, OH) were prepared by the standard solid state sintering method and irradiated with He ions under a fluence of $5\times 10^{16}$ ions/cm$^{2}$ at 450 $^{\circ}\!$C. Irradiation induced formation and growth of the He bubbles were observed by a transmission electron microscope. Hydroxyapatite Ca$_{10}$(PO$_{4})_{6}$(OH)$_{2}$ and fluoroapatite Ca$_{10}$(PO$_{4})_{6}$F$_{2}$ with different He bubble morphologies indicate the influence of OH$^{-}$/F$^{-}$ substitution on the He-ion annealing efficiency, as well as the structure itself, which affects the process of He bubble evolution and formation. The grain boundaries also act as sinks to accumulate He bubbles. No obvious irradiation damage but slight intensity reduction and left shift of diffraction peaks were observed according to the grazing incidence x-ray diffraction and Raman spectra characterizations, indicating that defects of interstitials and vacancies were generated.
|
|
Received: 23 February 2020
Published: 25 April 2020
|
|
|
|
Fund: Supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01007) and partially by the Energy Development Foundation of Energy College (Grant No. 2018NYFZ01). |
|
|
[1] | Gaillard C, Chevarier N, Millard-Pinard N, Delichère P and Sainsot P 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 161–163 646 | [2] | Tõnsuaadu K, Peld M and Bender V 2003 J. Therm. Anal. Calorim. 72 363 | [3] | Stock M J, Humphreys M C S, Smith V C, Johnson R D and Pyle D M 2014 Am. Mineral. 100 281 | [4] | Martin P, Carlot G, Chevarier A, Den-Auwer C and Panczerc G 1999 J. Nucl. Mater. 275 268 | [5] | Gao X N, Huang Y, Teng Y C, Yan M H, Zhang H B, Tuo X G and Peng S M 2018 J. Nucl. Mater. 507 297 | [6] | Huang Y, Zhang H, Zhou X and Peng S 2017 J. Nucl. Mater. 485 105 | [7] | Weber W J, Ewing R C, Catlow C R A, de la Rubia T D, Hobbs L W, Kinoshita C, Matzke H, Motta A T, Nastasi M, Salje E K H, Vance E R and Zinkle S J 1998 J. Mater. Res. 13 1434 | [8] | Miro S, Studer F, Costantini J M, Haussy J, Trouslard P and Grob J J 2006 J. Nucl. Mater. 355 1 | [9] | Wang J, Gao X, Gao N, Wang Z G, Cui M H, Wei K F, Yao C F, Sun J R, Li B S, Zhu Y B, Pang L L, Li Y F, Wang D and Xie E Q 2015 J. Nucl. Mater. 457 182 | [10] | Chen H, Liu W, Cheng Y, Peng J, Liang X, Hu L and Wang G 2019 Mater. Lett. 247 11 | [11] | Beaufort M F, Vallet M, Nicolaï J, Oliviero E and Barbot J F 2015 J. Appl. Phys. 118 205904 | [12] | Liu B, Zou J, Lin L, Wang S, Bai Y, Liu C and Li Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 431 67 | [13] | Boujelbene M and Mhiri T 2014 Ionics 20 1267 | [14] | Hadrich A, Lautié A and Mhiri T 2001 Spectrochim. Acta Part A 57 1673 | [15] | Zhao Z, Niu M, Wang H, Gao H, Peng K, Zang H and Ma M 2019 J. Eur. Ceram. Soc. 39 832 | [16] | Li B, Liu H, Kang L, Zhang T, Xu L and Xiong A 2019 J. Eur. Ceram. Soc. 39 4307 | [17] | Liu J, Glasmacher U A, Lang M, Trautmann C, Voss K O, Neumann R, Wagner G A and Miletich R 2008 Appl. Phys. A 91 17 | [18] | Pang L L, Li B S, Shen T L et al 2018 Chin. Phys. Lett. 35 026102 | [19] | Soulet S, Carpen J, Chaumont J, Kaitasov O, Ruault M O and Krupa J C 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 184 383 | [20] | Tse C, Welch D O and Royce B S H 1973 Calc. Tiss. Res. 13 47 | [21] | Morishita K, Sugano R 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 255 52 | [22] | Trachenko K 2004 J. Phys.: Condens. Matter 16 1491 | [23] | Zhang Y, Ishimaru M, Jagielski J, Zhang W, Zhu Z, Saraf L V, Jiang W, Thome L and Weber W J 2010 J. Phys. D 43 085303 | [24] | Li F B, Ran G, Gao N, Zhao S Q and Li N 2019 Chin. Phys. B 28 085203 | [25] | Yang Z M, Zhang K, Qiu N, Zhang H B, Wang Y and Chen J 2019 Chin. Phys. B 28 46201 | [26] | Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|