Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 055201    DOI: 10.1088/0256-307X/37/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry
Yun-Peng Yang1,2, Jing Zhang3, Zhi-Yuan Li3, Li-Feng Wang2,3, Jun-Feng Wu3, Wen-Hua Ye2,3**, Xian-Tu He2,3
1School of Physics, Peking University, Beijing 100871
2Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871
3Institute of Applied Physics and Computational Mathematics, Beijing 100094
Cite this article:   
Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li et al  2020 Chin. Phys. Lett. 37 055201
Download: PDF(794KB)   PDF(mobile)(795KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Rayleigh–Taylor instability at the weakly nonlinear (WN) stage in spherical geometry is studied by numerical simulation. The mode coupling processes are revealed. The results are consistent with the WN model based on parameter expansion, while higher order effects are found to be non-negligible. For Legendre mode perturbation $P_n(\cos\theta)$, the nonlinear saturation amplitude (NSA) of the fundamental mode decreases with the mode number $n$. When $n$ is large, the spherical NSA is lower than the corresponding planar one. However, for large $n$, the planar NSA can be recovered by applying Fourier transformation to the bubble/spike near the equator and calculating the NSA of the converted trigonometric harmonic.
Received: 30 December 2019      Published: 25 April 2020
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11575033, 11675026, and 11975053.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/055201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/055201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Peng Yang
Jing Zhang
Zhi-Yuan Li
Li-Feng Wang
Jun-Feng Wu
Wen-Hua Ye
Xian-Tu He
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 055201
[2] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 055201
[3] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 055201
[4] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 055201
[5] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 055201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 055201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 055201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 055201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 055201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 055201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 055201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 055201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 055201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 055201
Viewed
Full text


Abstract