Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 054204    DOI: 10.1088/0256-307X/37/5/054204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si
Meng-Han Liu1, Peng Chen1**, Zi-Li Xie1, Xiang-Qian Xiu1, Dun-Jun Chen1, Bin Liu1, Ping Han1, Yi Shi1, Rong Zhang1**, You-Dou Zheng1, Kai Cheng2, Li-Yang Zhang2
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Enkris Semiconductor Inc. NW-20, Nanopolis Suzhou, Suzhou 215123
Cite this article:   
Meng-Han Liu, Peng Chen, Zi-Li Xie et al  2020 Chin. Phys. Lett. 37 054204
Download: PDF(1842KB)   PDF(mobile)(1836KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Square microdisks with round corners are fabricated using a standard GaN-based blue LED on Si substrates. Whispering gallery-like modes in the square microdisks are investigated by finite-difference time-domain simulation. The simulation results reveal that the round corners in square microdisks can substantially suppress the number of light propagation paths and further reduce the number of optical modes. A confocal micro-photoluminescence is performed to analyze the optical properties of the square microdisks at room temperature. The single-mode dominant resonant emission is obtained in the square microdisk with corner radius of 1.5 μm.
Received: 27 February 2020      Published: 25 April 2020
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  81.05.Ea (III-V semiconductors)  
Fund: Supported by the National Key R&D Program of China under Grant Nos. 2016YFB0400102 and 2016YFB0400602, the National Natural Science Foundation of China under Grant Nos. 61674076, 61422401, and 51461135002, the Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics, Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No. IOSKL2017KF03, the Natural Science Foundation for Young Scientists of Jiangsu Province under Grant No. BK20160376, the Research Funds from NJU-Yangzhou Institute of Opto-electronics, and the Research and Development Funds from State Grid Shandong Electric Power Company and Electric Power Research Institute.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/054204       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/054204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng-Han Liu
Peng Chen
Zi-Li Xie
Xiang-Qian Xiu
Dun-Jun Chen
Bin Liu
Ping Han
Yi Shi
Rong Zhang
You-Dou Zheng
Kai Cheng
Li-Yang Zhang
[1]Jiang X F, Zou C L, Wang L, Gong Q H and Xiao Y F 2016 Laser & Photon. Rev. 10 40
[2]He L N, Özdemir Ş K and Yang L 2013 Laser & Photon. Rev. 7 60
[3]Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X and Vahala K 2009 Nature 457 455-U3
[4]Muller A, Flagg E B, Lawall J R and Solomon G S 2010 Opt. Lett. 35 2293
[5]Dobrovolsky A, Stehr J E, Sukrittanon S, Kuang Y J, Tu C W, Chen W M M and Buyanova I A 2015 Small 11 6331
[6]Wang M and Zhang X P 2017 Nanoscale 9 2689
[7]Takeuchi H, Natsume K, Suzuki S and Sakata H 2007 Electron. Lett. 43 30
[8]Nozaki K and Baba T 2004 Appl. Phys. Lett. 84 4875
[9]Selles J, Crepel V, Roland I, El Kurdi M, Checoury X, Boucaud P, Mexis M, Leroux M, Damilano B, Rennesson S, Semond F, Gayral B, Brimont C and Guillet T 2016 Appl. Phys. Lett. 109 231101
[10]Choi H W, Hui K N, Lai P T, Chen P, Zhang X H, Tripathy S, Teng J H and Chua S J 2006 Appl. Phys. Lett. 89 211101
[11]Yang S C, Wang Y and Sun H D 2015 Adv. Opt. Mater. 3 1136
[12]Qiang Z X, Zhou W D and Soref R A 2007 Opt. Express 15 1823
[13]Xie W Q, Stöferle T, Rainò G, Aubert T, Bisschop S, Zhu Y P, Mahrt R F, Geiregat P, Brainis E, Hens Z and Van Thourhout D 2017 Adv. Mater. 29 1604866
[14]Qualtieri A, Morello G, Spinicelli P, Todaro M T, Stomeo T, Martiradonna L, De Giorgi M, Quelin X, Buil S, Bramati A, Hermier J P, Cingolani R and De Vittorio M 2009 New J. Phys. 11 033025
[15]Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[16]Wu X, Li H, Liu L Y and Xu L 2008 Appl. Phys. Lett. 93 081105
[17]Tang B, Sun L X, Zheng W H, Dong H X, Zhao B B, Si Q Q, Wang X X, Jiang X W, Pan A L and Zhang L 2018 Adv. Opt. Mater. 6 1800391
[18]Zhu G Y, Li J P, Li J T, Guo J Y, Dai J, Xu C X and Wang Y J 2018 Opt. Lett. 43 647
[19]Yang Y D and Huang Y Z 2016 J. Phys. D 49 253001
[20]Guo W H, Huang Y Z, Lu Q Y and Yu L J 2004 Chin. Phys. Lett. 21 79
[21]Yang Y D, Weng H Z, Hao Y Z, Xiao J L and Huang Y Z 2018 Chin. Phys. B 27 114212
[22]Sellés J, Brimont C, Cassabois G, Valvin P, Guillet T, Roland I, Zeng Y, Checoury X, Boucaud P, Mexis M, Semond F and Gayral B 2016 Sci. Rep. 6 21650
[23]Moon H J, Sun S P, Park G W, Lee J H and A N K 2003 Jpn. J. Appl. Phys. Part 2 Lett. 42 L652
[24]Tamboli A C, Haberer E D, Sharma R, Lee K H, Nakamura S and Hu E L 2007 Nat. Photon. 1 61
[25]Athanasiou M, Smith R, Liu B and Wang T 2015 Sci. Rep. 4 7250
Related articles from Frontiers Journals
[1] Hang Heng, Rong Wang. Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities[J]. Chin. Phys. Lett., 2016, 33(08): 054204
[2] HENG Hang, YANG Li. Multi-Band Absorption Properties and Near-Field Enhancement in Mid-Infrared Based on the Interference Theory[J]. Chin. Phys. Lett., 2014, 31(05): 054204
[3] HENG Hang, YANG Li, YE Yong-Hong. Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range[J]. Chin. Phys. Lett., 2014, 31(1): 054204
[4] LIAN Jin, FU Jin-Xin, GAN Lin, LI Zhi-Yuan. Experimental Realization of a Magnetically Tunable Cavity in a Gyromagnetic Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(7): 054204
[5] WANG Shi-Jiang, HUANG Yong-Zhen, YANG Yue-De, HU Yong-Hong, XIAO Jin-Long, DU Yun. Output Characteristics of an InP/InGaAsP Triangle Microcavity Laser[J]. Chin. Phys. Lett., 2010, 27(1): 054204
[6] ZHOU Chang-Zhu, XIONG Zhi-Gang, LI Zhi-Yuan. High-Q Microcavity in Two-Dimensional Diamond Photonic Crystal Thin Films Realized via a Mode Gap[J]. Chin. Phys. Lett., 2009, 26(9): 054204
[7] CHEN Wei, XING Ming-Xin, ZHOU Wen-Jun, LIU An-Jin, ZHENG Wan-Hua. High Polarization Single Mode Photonic Crystal Microlaser[J]. Chin. Phys. Lett., 2009, 26(8): 054204
[8] ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Bo, CHEN San, DING Hong-Lin, LIUKui, WANG Xiang, XU Jun, LI Wei, HUANG Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity[J]. Chin. Phys. Lett., 2008, 25(5): 054204
[9] CHEN Qin, HUANG Yong-Zhen. WG-Like Modes Selectivity in a Square Cavity with Posts[J]. Chin. Phys. Lett., 2006, 23(6): 054204
[10] SONG Feng, WU Zhao-Hui, LIU Shu-Jing, CAI Hong, TIAN Jian-Guo, ZHANG Guang-Yin, Boris Denker, Sergei Sverchkov. A Passive Q-Switched Microchip Er/Yb Glass Laser Pumped by Laser Diode[J]. Chin. Phys. Lett., 2006, 23(5): 054204
[11] QIAN Bo, CHEN San, CEN Zhan-Hong, CHEN Kun-Ji, LIU Yan-Song, XU Jun, MA Zhong-Yuan, LI Wei, HUANG Xin-Fan. Step-by-Step Laser Crystallization of Amorphous Si:H/SiNx:H Multilayer for Active Layer in Microcavities[J]. Chin. Phys. Lett., 2006, 23(5): 054204
[12] WANG Gang, LUO Bin, PAN Wei, XIONG Jie. A Transfer Matrix-Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2005, 22(10): 054204
[13] CHEN San, QIAN Bo, WEI Jun-Wei, CHEN Kun-Ji, XU Jun, LI Wei, HUANG Xin-Fan. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities[J]. Chin. Phys. Lett., 2005, 22(1): 054204
[14] WAN Xin-Jun, ZHANG Shu-Lian, LIU Gang, FEI Li-Gang. Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers[J]. Chin. Phys. Lett., 2004, 21(11): 054204
[15] HUANG Zhan-Chao, WU Hui-Zhen. Design of Synthesized DBRs for Long-Wavelength InP-Based Vertical-Cavity Surface-Emitting Lasers[J]. Chin. Phys. Lett., 2004, 21(2): 054204
Viewed
Full text


Abstract