FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source |
Yi-Chen Xu1,2,3, Zhi-Min Wang1,2**, Feng-Feng Zhang1,2, Rui-Nan Yang1,2,3, Xu-Chao Liu1,2,3, Yue Song1,2,3, Yong Bo1,2, Qin-Jun Peng1,2, Zu-Yan Xu1,2 |
1Key Laboratory of Solid-state Laser, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing 100190 2Key Laboratory of Functional Crystal and Laser Technology, TIPC, Chinese Academy of Sciences, Beijing 100190 3University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang et al 2020 Chin. Phys. Lett. 37 054203 |
|
|
Abstract Spectral beam combining is an effective way to achieve high-brightness direct diode laser output. We present an experimental study on spectral beam combining with external cavity based on transmission grating. Using a series of cylindrical transform lenses with different focal lengths, spectral beaming combining efficiency is greatly improved, and the results of wavelength intervals are consistent with the theoretical calculations. With the injection current of 90 A, a 75.1 W cw 930 nm output power with wavelength span of 18.6 nm and spectral beam combining efficiency of 92.7% is achieved, the beam parameter product is 5.77 mm$\cdot$mrad.
|
|
Received: 27 February 2020
Published: 25 April 2020
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No. 61535013. |
|
|
[1] | Izatt J, Fujimoto J and Tuchin V 2014 Proc. SPIE 8934 89343N | [2] | Landsman A, Robbins A, Angelini P, Wu C, Cook J, Oster M and Bornstein E 2010 J. Am. Podiat. Med. Assn. 100 166 | [3] | Bartolacci C, Laroche M, Gilles H, Girard S, Robin T and Cadier B 2010 Opt. Express 18 5100 | [4] | Fan T Y, Sanchez A, Daneu V, Aggarwal R L, Buchter S C, Goyal A and Cook C C 2000 Proceedings of IEEE Aerospace Conference (Big Sky, Montana, USA 25–25 March 2000) 3 49 | [5] | Daneu V, Sanchez A, Fan T Y, Choi H K, Turner G W and Cook C C 2000 Opt. Lett. 25 405 | [6] | Hamilton C E, Tidwell S C, Meekhof D, Seamans J and Lowenthal D D 2004 Proc. SPIE 5336 1 | [7] | Chann B, Goyal A K, Fan T Y, Sanchez R A, Volodin B L and Ban V S 2006 Opt. Lett. 31 1253 | [8] | Gopinath J, Chann B, Fan T Y and Sanchez R A 2008 Opt. Express 16 9405 | [9] | Zhang J, Peng H Y, Fu X H, Liu Y, Qin L, Miao G Q and Wang L J 2013 Opt. Express 21 3627 | [10] | Tian J Y, Zhang J, Peng H Y, Lei Y, Qin L, Ning Y Q and Wang L J 2019 Optik 192 162918 | [11] | Sun F Y, Shu S L, Zhao Y F, Hou G Y, Lu H Y, Zhang X, Wang L J, Tian S C, Tong C Z and Wang L J 2018 Opt. Express 26 21813 | [12] | Zhao Y F, Sun F Y, Tong C Z, Shu S L, Hou G Y, Lu H Y, Zhang X, Wang L J, Tian S C and Wang L J 2018 Opt. Express 26 14058 | [13] | Meng H C, Sun T Y, Tan H, Yu J H, Du W C, Tian F, Li J M, Gao S X, Wang X J and Wu D Y 2015 Opt. Express 23 21819 | [14] | Meng H, Wu D Y, Tan H, Li J M, Yu J H and Gao S X 2015 Chin. J. Lasers 42 0302003 (in Chinese) | [15] | Meng H, Ruan X, Du W C, Wang Z, Lei F C, Yu J H and Tan H 2017 Laser Phys. Lett. 14 045811 | [16] | Tan H, Meng H C, Ruan X, Du W C and Wang Z 2018 Laser Phys. 28 035802 | [17] | Loewen E, Nevière M and Maystre D 1977 Appl. Opt. 16 2711 | [18] | Wright D, Greve P, Fleischer J and Austin L 1992 Opt. Quantum Electron. 24 S993 | [19] | Hao M M 2012 PhD Dissertation (Changchun: Graduate University of Chinese Academy of Sciences) (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|