Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 045201    DOI: 10.1088/0256-307X/37/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption
De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen**
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), and College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001
Cite this article:   
De-Ting Wang, Xian-Chao Wang, Xiao Zhang et al  2020 Chin. Phys. Lett. 37 045201
Download: PDF(9848KB)   PDF(mobile)(9839KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Carbon nanotube@polypyrrole (CNT@PPy) hybrids have been successfully fabricated via a simple in situ chemical oxidation polymerization. The thickness of the PPy shell can be finely controlled in the range of 3.0–6.4 nm. The dielectric loss of core-shell hybrids can be tuned by the shell thickness, resulting in a well-matched characteristic impedance that can enhance electromagnetic wave (EMW) absorption performance. Minimum reflection loss of the hybrid with moderate PPy shell thickness can reach $-51.4$ dB at 11.8 GHz with a matching thickness of merely 2 mm. Furthermore, the minimum reflection loss values of the hybrid are below $-30$ dB even at thickness in the range of 1.4–1.9 mm, endowing the possibility of practical application of the hybrids in electromagnetic wave absorption field.
Received: 02 January 2020      Published: 24 March 2020
PACS:  52.70.Gw (Radio-frequency and microwave measurements)  
  52.70.Ds (Electric and magnetic measurements)  
  77.84.Lf (Composite materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 51972077, and the Heilongjiang Touyan Innovation Team Program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/045201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
De-Ting Wang
Xian-Chao Wang
Xiao Zhang
Hao-Ran Yuan
Yu-Jin Chen
[1]Liu H T, Liu Y, Wang B S and Li C S 2015 Chin. Phys. Lett. 32 044102
[2]Mo Z, Yang R, Lu D, Yang L, Hu Q, Li H, Zhu H, Tang Z and Gui X 2019 Carbon 144 433
[3]Zheng J, Lv H, Lin X, Ji G, Li X and Du Y 2014 J. Alloys Compd. 589 174
[4]Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[5]Ren Z W, Xie H and Zhou Y Y 2017 Chin. Phys. Lett. 34 105201
[6]Verma P, Saini P and Choudhary V 2015 Mater. & Des. 88 269
[7]Sun X, He J, Li G, Tang J, Wang T, Guo Y and Xue H 2013 J. Mater. Chem. C 1 765
[8]Saini P, Choudhary V, Singh B P, Mathur R B and Dhawan S K 2011 Synth. Met. 161 1522
[9]Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L and Cao M S 2014 ACS Appl. Mater. & Interfaces 6 7471
[10]Lu S, Shao J, Ma K, Chen D, Wang X, Zhang L, Meng Q and Ma J 2018 Carbon 136 387
[11]Liu X G, Geng D Y and Zhang Z D 2008 Appl. Phys. Lett. 92 243110
[12]Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q and Wang M 2012 Small 8 1214
[13]Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L and Qin Y 2012 ACS Nano 6 11009
[14]Wang Y, Du Y, Xu P, Qiang R and Han X J 2017 Polymers 9 29
[15]Wu F, Xie A, Sun M, Wang Y and Wang M 2015 J. Mater. Chem. A 3 14358
[16]Liu X, Hao C, He L, Yang C, Chen Y, Jiang C and Yu R 2018 Nano Res. 11 4169
[17]Liu Y, Liu X X, Wang X J and Wen W 2014 Chin. Phys. Lett. 31 047702
[18]Che R C 2006 Appl. Phys. Lett. 88 033105
[19]Wen F, Zhang F and Liu Z 2011 J. Phys. Chem. C 115 14025
[20]Zhao C, Zhang A, Zheng Y and Luan J 2012 Mater. Res. Bull. 47 217
[21]Wang H, Ma N, Yan Z, Deng L, He J, Hou Y, Jiang Y and Yu G 2015 Nanoscale 7 7189
[22]Yu L, Yang Q, Liao J, Zhu Y, Li X, Yang W and Fu Y 2018 Chem. Eng. J. 352 490
[23]Kim Y Y, Yun J, Kim H I and Lee Y S 2012 J. Ind. Eng. Chem. 18 392
[24]Ji T, Tu R, Mu L, Lu X and Zhu J 2018 Appl. Catal. B-Eeviron. 220 581
[25]Ting T H, Jau Y N and Yu R P 2012 Appl. Surf. Sci. 258 3184
[26]Li Z F, Zhang H, Liu Q, Sun L, Stanciu L and Xie J 2013 ACS Appl. Mater. & Interfaces 5 2685
[27]Yang C, Zhang L, Hu N, Yang Z, Su Y, Xu S, Li M, Yao L, Hong M and Zhang Y 2017 Chem. Eng. J. 309 89
[28]Wang L, Yao Q, Bi H, Huang F, Wang Q and Chen L 2015 J. Mater. Chem. A 3 7086
[29]Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486
[30]Kim S S, Jo S B, Gueon K I, Gueon, Choi K K, Kim J M and Chum K S 1991 IEEE Trans. Magn. 27 5462
[31]Cao M S, Yang J, Song W L, Zhang D Q, Wen B, Jin H B, Hou Z L and Yuan J 2012 ACS Appl. Mater. & Interfaces 4 6949
[32]Wu Z C, Pei K, Xing L S, Yu X F, You W B and Che R C 2019 Adv. Funct. Mater. 29 1901448
[33]Lu B, Huang H, Dong X L, Zhang X F, Lei J P, Sun J P and Dong C 2008 J. Appl. Phys. 104 114313
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 045201
[2] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 045201
[3] Zhao-Wen Ren, Hui Xie, Ying-Ying Zhou. Enhancement of Heat-Resistance of Carbonyl Iron Particles by Coating with Silica and Consequent Changes in Electromagnetic Properties[J]. Chin. Phys. Lett., 2017, 34(10): 045201
[4] YU Yong-Hao, WANG Lang-Ping, WANG Xiao-Feng, JIANG Wei, CHEN Qiong. Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation[J]. Chin. Phys. Lett., 2015, 32(08): 045201
[5] AZAM Hussain, GAO Bing-Xi, LIU Wan-Dong, XIE Jin-Lin, the EAST Team. Electron Cyclotron Emission Imaging Observations of m/n=1/1 and Higher Harmonic Modes during Sawtooth Oscillation in ICRF Heating Plasma on EAST[J]. Chin. Phys. Lett., 2015, 32(06): 045201
[6] YANG Yi-Ming, YUAN Cheng-Wei, QIAN Bao-Liang. Influence of Electric Field Distribution on High-Power Array Antenna Radiation Pattern with Rectangular Aperture[J]. Chin. Phys. Lett., 2014, 31(06): 045201
[7] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang, XU Liu-Rong, ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator[J]. Chin. Phys. Lett., 2009, 26(5): 045201
[8] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, YANG Jian-Hua, YUAN Cheng-Wei, XU Liu-Rong, ZHAO Yan-Song. Simulation and Experimental Research of a Novel Vircator[J]. Chin. Phys. Lett., 2008, 25(7): 045201
[9] FAN Yu-Wei, SHU Ting, LIU Yong-Gui, ZHONG Hui-Huang, LI Zhi-Qiang, WANG Yong, ZHAO Yan-Song, LUO Ling. A Compact Magnetically Insulated Line Oscillator with New-Type Beam Dump[J]. Chin. Phys. Lett., 2005, 22(1): 045201
[10] ZHANG Shu, HU Xi-Wei. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas[J]. Chin. Phys. Lett., 2005, 22(1): 045201
[11] ZHANG Jun, ZHONG Hui-Huang, SHU Ting, LUO Ling, WANG Yong. Experimental Investigation on Low Magnetic Field Operation of an Overmoded Slow-Wave High-Power Microwave Generator[J]. Chin. Phys. Lett., 2004, 21(12): 045201
[12] SHU Ting, WANG Yong, QIAN Bao-Liang, TAN Qi-Mei. A Compact Vircator with Feedback Annulus Operated in Quasi-Single TM01 Mode Within C Band[J]. Chin. Phys. Lett., 2002, 19(11): 045201
[13] XU Hong-liang, CAO Jin-xiang, DING Wei-Xing, YU Chang-xuan. Experimental Investigation of Reflectometry as a Density Fluctuation Diagnostic[J]. Chin. Phys. Lett., 1996, 13(5): 045201
[14] XI Zhonghe, ZHANG Guanghua, YANG Fan, XU Fang, ZHANG Qiang*. Probe Contamination Effect in Silane Plasma and its Improvement[J]. Chin. Phys. Lett., 1993, 10(2): 045201
Viewed
Full text


Abstract