PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption |
De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen** |
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), and College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001
|
|
Cite this article: |
De-Ting Wang, Xian-Chao Wang, Xiao Zhang et al 2020 Chin. Phys. Lett. 37 045201 |
|
|
Abstract Carbon nanotube@polypyrrole (CNT@PPy) hybrids have been successfully fabricated via a simple in situ chemical oxidation polymerization. The thickness of the PPy shell can be finely controlled in the range of 3.0–6.4 nm. The dielectric loss of core-shell hybrids can be tuned by the shell thickness, resulting in a well-matched characteristic impedance that can enhance electromagnetic wave (EMW) absorption performance. Minimum reflection loss of the hybrid with moderate PPy shell thickness can reach $-51.4$ dB at 11.8 GHz with a matching thickness of merely 2 mm. Furthermore, the minimum reflection loss values of the hybrid are below $-30$ dB even at thickness in the range of 1.4–1.9 mm, endowing the possibility of practical application of the hybrids in electromagnetic wave absorption field.
|
|
Received: 02 January 2020
Published: 24 March 2020
|
|
PACS: |
52.70.Gw
|
(Radio-frequency and microwave measurements)
|
|
52.70.Ds
|
(Electric and magnetic measurements)
|
|
77.84.Lf
|
(Composite materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No. 51972077, and the Heilongjiang Touyan Innovation Team Program. |
|
|
[1] | Liu H T, Liu Y, Wang B S and Li C S 2015 Chin. Phys. Lett. 32 044102 | [2] | Mo Z, Yang R, Lu D, Yang L, Hu Q, Li H, Zhu H, Tang Z and Gui X 2019 Carbon 144 433 | [3] | Zheng J, Lv H, Lin X, Ji G, Li X and Du Y 2014 J. Alloys Compd. 589 174 | [4] | Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401 | [5] | Ren Z W, Xie H and Zhou Y Y 2017 Chin. Phys. Lett. 34 105201 | [6] | Verma P, Saini P and Choudhary V 2015 Mater. & Des. 88 269 | [7] | Sun X, He J, Li G, Tang J, Wang T, Guo Y and Xue H 2013 J. Mater. Chem. C 1 765 | [8] | Saini P, Choudhary V, Singh B P, Mathur R B and Dhawan S K 2011 Synth. Met. 161 1522 | [9] | Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L and Cao M S 2014 ACS Appl. Mater. & Interfaces 6 7471 | [10] | Lu S, Shao J, Ma K, Chen D, Wang X, Zhang L, Meng Q and Ma J 2018 Carbon 136 387 | [11] | Liu X G, Geng D Y and Zhang Z D 2008 Appl. Phys. Lett. 92 243110 | [12] | Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q and Wang M 2012 Small 8 1214 | [13] | Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L and Qin Y 2012 ACS Nano 6 11009 | [14] | Wang Y, Du Y, Xu P, Qiang R and Han X J 2017 Polymers 9 29 | [15] | Wu F, Xie A, Sun M, Wang Y and Wang M 2015 J. Mater. Chem. A 3 14358 | [16] | Liu X, Hao C, He L, Yang C, Chen Y, Jiang C and Yu R 2018 Nano Res. 11 4169 | [17] | Liu Y, Liu X X, Wang X J and Wen W 2014 Chin. Phys. Lett. 31 047702 | [18] | Che R C 2006 Appl. Phys. Lett. 88 033105 | [19] | Wen F, Zhang F and Liu Z 2011 J. Phys. Chem. C 115 14025 | [20] | Zhao C, Zhang A, Zheng Y and Luan J 2012 Mater. Res. Bull. 47 217 | [21] | Wang H, Ma N, Yan Z, Deng L, He J, Hou Y, Jiang Y and Yu G 2015 Nanoscale 7 7189 | [22] | Yu L, Yang Q, Liao J, Zhu Y, Li X, Yang W and Fu Y 2018 Chem. Eng. J. 352 490 | [23] | Kim Y Y, Yun J, Kim H I and Lee Y S 2012 J. Ind. Eng. Chem. 18 392 | [24] | Ji T, Tu R, Mu L, Lu X and Zhu J 2018 Appl. Catal. B-Eeviron. 220 581 | [25] | Ting T H, Jau Y N and Yu R P 2012 Appl. Surf. Sci. 258 3184 | [26] | Li Z F, Zhang H, Liu Q, Sun L, Stanciu L and Xie J 2013 ACS Appl. Mater. & Interfaces 5 2685 | [27] | Yang C, Zhang L, Hu N, Yang Z, Su Y, Xu S, Li M, Yao L, Hong M and Zhang Y 2017 Chem. Eng. J. 309 89 | [28] | Wang L, Yao Q, Bi H, Huang F, Wang Q and Chen L 2015 J. Mater. Chem. A 3 7086 | [29] | Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486 | [30] | Kim S S, Jo S B, Gueon K I, Gueon, Choi K K, Kim J M and Chum K S 1991 IEEE Trans. Magn. 27 5462 | [31] | Cao M S, Yang J, Song W L, Zhang D Q, Wen B, Jin H B, Hou Z L and Yuan J 2012 ACS Appl. Mater. & Interfaces 4 6949 | [32] | Wu Z C, Pei K, Xing L S, Yu X F, You W B and Che R C 2019 Adv. Funct. Mater. 29 1901448 | [33] | Lu B, Huang H, Dong X L, Zhang X F, Lei J P, Sun J P and Dong C 2008 J. Appl. Phys. 104 114313 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|