Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044209    DOI: 10.1088/0256-307X/37/4/044209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting
Kun-Peng Wang1,2,3, Jun Zhuang1,2,3, Xiao-Dong He1,2**, Rui-Jun Guo1,2,3, Cheng Sheng1,2, Peng Xu1,2, Min Liu1,2, Jin Wang1,2, Ming-Sheng Zhan1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071
2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Kun-Peng Wang, Jun Zhuang, Xiao-Dong He et al  2020 Chin. Phys. Lett. 37 044209
Download: PDF(3267KB)   PDF(mobile)(3835KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate high-fidelity manipulation of the quantized motion of a single $^{87}$Rb atom in an optical tweezer via microwave couplings induced by Stern–Gerlach splitting. The Stern–Gerlach splitting is mediated by polarization gradient of a strongly focused tweezer beam that functions as fictitious magnetic field gradient. The spatial splitting removes the orthogonality of the atomic spatial wavefunctions, thus enables the microwave couplings between the motional states. We obtain coherent Rabi oscillations for up to third-order sideband transitions, in which a high fidelity of larger than $0.99$ is obtained for the spin-flip transition on the first order sideband after subtraction of the state preparation and detection error. The Stern–Gerlach splitting is measured at a precision of better than $0.05$ nm. This work paves the way for quantum engineering of motional states of single atoms, and may have wide applications in few body physics and ultracold chemistry.
Received: 18 January 2020      Published: 06 March 2020
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304501, 2016YFA0302800 and 2016YFA0302002), the Key Research Program of Frontier Science of the Chinese Academy of Sciences (CAS) (Grant No. ZDBS-LY-SLH012), the National Natural Science Foundation of China (Grant No. 11774389), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21010100), and the Youth Innovation Promotion Association CAS (Grant No. 2019325).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/044209       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/044209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun-Peng Wang
Jun Zhuang
Xiao-Dong He
Rui-Jun Guo
Cheng Sheng
Peng Xu
Min Liu
Jin Wang
Ming-Sheng Zhan
[1]Barredo D, de S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021
[2]Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024
[3]Kim H, Lee W, Lee H, Jo H, Song Y and Ahn J 2016 Nat. Commun. 7 13317
[4]Lee W, Kim H and Ahn J 2016 Opt. Express 24 9816
[5]Robens C, Zopes J, Alt W, Brakhane S, Meschede D and Alberti A 2017 Phys. Rev. Lett. 118 065302
[6]Barredo D, Lienhard V, de S, Lahaye T and Browaeys A 2018 Nature 561 79
[7]Kumar A, Wu T Y , Giraldo F and Weiss D S 2018 Nature 561 83
[8]Brown M O, Thiele T, Kiehl C, Hsu T W and Regal C A 2019 Phys. Rev. X 9 011057
[9]Browaeys A, Barredo D and Lahaye T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152001
[10]Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[11]Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900
[12]Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156
[13]Kaufman A M, Lester B J, Foss-Feig M, Wall M L, Rey A M and Regal C A 2015 Nature 527 208
[14]Lester B J, Lin Y, Brown M O, Kaufman A M, Ball R J, Knill E, Rey A M and Regal C A 2018 Phys. Rev. Lett. 120 193602
[15]Ospelkaus C, Langer C E, Amini J M, Brown K R, Leibfried D and Wineland D J 2008 Phys. Rev. Lett. 101 90502
[16]Ospelkaus C, Warring U, Colombe Y, Brown K R, Amini J M, Leibfried D and Wineland D J 2011 Nature 476 181
[17]Ding S, Loh H, Hablutzel R, Gao M, Maslennikov G and Matsukevich D 2014 Phys. Rev. Lett. 113 73002
[18]Ballance C J, Harty T P, Linke N M, Sepiol M A and Lucas D M 2016 Phys. Rev. Lett. 117 060504
[19]Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D and Wineland D J 2016 Phys. Rev. Lett. 117 060505
[20]Srinivas R, Burd S C, Sutherland R T, Wilson A C, Wineland D J, Leibfried D, Allcock D T C and Slichter D H 2019 Phys. Rev. Lett. 122 163201
[21]Förster L, Karski M, Choi J M , Steffen A, Alt W, Meschede D, Widera A, Montano E, Lee J H, Rakreungdet W and Jessen P S 2009 Phys. Rev. Lett. 103 233001
[22]Thompson J D, Tiecke T G, Zibrov A S, Vuletić V and Lukin M D 2013 Phys. Rev. Lett. 110 133001
[23]Li X, Corcovilos T A, Wang Y and Weiss D S 2012 Phys. Rev. Lett. 108 103001
[24]Belmechri N, Förster L, Alt W, Widera A, Meschede D and Alberti A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 104006
[25]Wu T Y , Kumar A, Giraldo F and Weiss D S 2019 Nat. Phys. 15 538
[26]Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P and Rauschenbeutel A 2016 Phys. Rev. A 94 61401
[27]Dareau A, Meng Y, Schneeweiss P and Rauschenbeutel A 2018 Phys. Rev. Lett. 121 253603
[28]Wang K P , He X D , Guo R J , Xu P, Sheng C, Zhuang J, Xiong Z Y , Liu M, Wang J and Zhan M S 2019 Phys. Rev. A 100 63429
[29]Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014
[30]Le F, Schneeweiss P and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92
[31]See the Supplementary Materials for more details
[32]Magesan E, Gambetta J M and Emerson J 2012 Phys. Rev. A 85 042311
[33]Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Phys. Rev. A 77 12307
[34]Sheng C, He X D , Xu P, Guo R J , Wang K P , Xiong Z Y , Liu M, Wang J and Zhan M S 2018 Phys. Rev. Lett. 121 240501
[35]Liu L R , Hood J D, Yu Y, Zhang J T, Wang K, Lin Y W , Rosenband T and Ni K K 2019 Phys. Rev. X 9 021039
[36]Blume D 2012 Rep. Prog. Phys. 75 46401
[37]Greene C H, Giannakeas P and Pérez-Rìos J 2017 Rev. Mod. Phys. 89 35006
[38]Sowióski T and García-March Á M 2019 Rep. Prog. Phys. 82 104401
[39]Caldwell L and Tarbutt M R 2020 Phys. Rev. Res. 2 013251
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 044209
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 044209
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 044209
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 044209
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 044209
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 044209
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 044209
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 044209
[9] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 044209
[10] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 044209
[11] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 044209
[12] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 044209
[13] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 044209
[14] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 044209
[15] Qi Yin, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo. Compressed Sensing Quantum State Tomography Assisted by Adaptive Design[J]. Chin. Phys. Lett., 2018, 35(7): 044209
Viewed
Full text


Abstract