Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 040502    DOI: 10.1088/0256-307X/37/4/040502
GENERAL |
Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping
Chun-Yu Jia, Zhao-Xin Liang**
Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
Chun-Yu Jia, Zhao-Xin Liang 2020 Chin. Phys. Lett. 37 040502
Download: PDF(3089KB)   PDF(mobile)(3077KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A quantum system in complex potentials obeying parity-time ($\mathcal{P}\mathcal{T}$) symmetry could exhibit all real spectra, starting out in non-Hermitian quantum mechanics. The key physics behind a $\mathcal{P}\mathcal{T}$-symmetric system consists of the balanced gain and loss of the complex potential. We plan to include the nonequilibrium nature (i.e., the intrinsic kinds of gain and loss of a system) to a $\mathcal{P}\mathcal{T}$-symmetric many-body quantum system, with an emphasis on the combined effects of non-Hermitian due to nonequilibrium nature and $\mathcal{P}\mathcal{T}$ symmetry in determining the properties of a system. To this end, we investigate the static and dynamical properties of a dark soliton of a polariton Bose–Einstein condensate under the $\mathcal{P}\mathcal{T}$-symmetric non-resonant pumping by solving the driven-dissipative Gross–Pitaevskii equation both analytically and numerically. We derive the equation of motion for the center of mass of the dark soliton's center analytically with the help of the Hamiltonian approach. The resulting equation captures how the combination of the open-dissipative character and $\mathcal{P}\mathcal{T}$-symmetry affects the properties of the dark soliton; i.e., the soliton relaxes by blending with the background at a finite time. Further numerical solutions are in excellent agreement with the analytical results.
Received: 08 January 2020      Published: 24 March 2020
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 11835011.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/040502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/040502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chun-Yu Jia
Zhao-Xin Liang
[1]Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2]Bender C M 2007 Rep. Prog. Phys. 70 947
[3]Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[4]Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[5]Li J M, Harter A K, Liu J, Melo L D, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[6]Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2011 Int. J. Theor. Phys. 50 1019
[7]Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[8]Peng B, Ozdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L 2014 Science 346 328
[9]Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[10]Bender C M, Berntson B K, Parker D and Samuel E 2013 Am. J. Phys. 81 173
[11]Regensburger A, Bersch C, Miri M, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[12]Xu H, Mason D, Jiang L Y and Harris J G E 2016 Nature 537 80
[13]Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[14]Shelykh I A, Kavokin A V, Rubo Y G, Liew T C H and Malpuech G 2010 Semicond. Sci. Technol. 25 013001
[15]Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[16]Byrnes T, Kim N Y and Yamamoto Y 2014 Nat. Phys. 10 803
[17]Xue Y and Matuszewski M 2014 Phys. Rev. Lett. 112 216401
[18]Smirnov L A, Smirnova D A, Ostrovskaya E A and Kivshar Y S 2014 Phys. Rev. B 89 235310
[19]Pinsker F and Flayac H 2014 Phys. Rev. Lett. 112 140405
[20]Pinsker F 2015 Ann. Phys. 362 726
[21]Pinsker F and Flayac H 2016 Proc. R. Soc. A 472 20150592
[22]Ma X K, Egorov O A and Schumacher S 2017 Phys. Rev. Lett. 118 157401
[23]Ma X K and Schumacher S 2018 Phys. Rev. Lett. 121 227404
[24]Xu X R, Chen L, Zhang Z D and Liang Z X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 025303
[25]Amo A, Pigeon S, Sanvitto D, Sala V G, Hivet R, Carusotto I, Pisanello F, Leménager G, Houdré R, Giacobino E, Ciuti C and Bramati A 2011 Science 332 1167
[26]Cilibrizzi P, Ohadi H, Ostatnicky T, Askitopoulos A, Langbein W and Lagoudakis P 2014 Phys. Rev. Lett. 113 103901
[27]Walker P M, Tinkler L, Royall B, Skryabin D V, Farrer I, Ritchie D A, Skolnick M S and Krizhanovskii D N 2017 Phys. Rev. Lett. 119 097403
[28]Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554
[29]Gao T, Li G, Estrecho E, Liew T C H, ComberTodd D, Nalitov A, Steger M, West K, Pfeiffer L, Snok D W, Kavokin A V, Truscott A G and Ostrovskaya E A 2018 Phys. Rev. Lett. 120 065301
[30]Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaître A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G and Bloch J 2010 Nat. Phys. 6 860
[31]Qi W, Li H F and Liang Z X 2019 Chin. Phys. Lett. 36 040501
[32]Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[33]Lumer Y, Plotnik Y, Rechtsman M C and Segev M 2013 Phys. Rev. Lett. 111 263901
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 040502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 040502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 040502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 040502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 040502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040502
Viewed
Full text


Abstract