Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 040501    DOI: 10.1088/0256-307X/37/4/040501
GENERAL |
Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction
Yu-Han Wu1,2,3, Chong Liu1,2,3**, Zhan-Ying Yang1,2,3, Wen-Li Yang1,2,3,4
1School of Physics, Northwest University, Xi'an 710127
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
3NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127
4Institute of Modern Physics, Northwest University, Xi'an 710127
Cite this article:   
Yu-Han Wu, Chong Liu, Zhan-Ying Yang et al  2020 Chin. Phys. Lett. 37 040501
Download: PDF(794KB)   PDF(mobile)(781KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the properties of breather interactions in nonlinear Kerr media with self-steepening and space-time correction and with either self-focusing or self-defocusing nonlinearity, and present a new family of exact breather solutions via the Darboux transformation with a special-designed quadratic spectral parameter. In contrast to the previous results of the nonlinear Schrödinger equation (NLSE) hierarchy, we show that the relative phase of colliding breathers has a significant effect on the collision manifestation. In particular, only the out-of-phase interactions can generate small amplitude waves at the collision center, which are analogous to the NLSE super-regular breathers. Our results will deepen our understanding of the properties of breather interactions and they will offer the possibility of experimental observations of super-regular breather dynamics in systems with self-steepening and space-time correction.
Received: 09 January 2020      Published: 24 March 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11705145, 11947301, 11434013, and 11425522), the Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2017KCT-12 and 2017ZDJC-32), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ1003).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/040501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Han Wu
Chong Liu
Zhan-Ying Yang
Wen-Li Yang
[1]Dudley J M et al 2019 Int. Rev. Phys. Chem. 1 675
[2]Wabnitz S 2017 Nonlinear Guided Wave Optics: A Testbed for Extreme Waves (Bristol: IOP Publishing)
[3]Onorato M, Resitori S and Baronio F 2016 Rogue and Shock Waves in Nonlinear Dispersive Media (Berlin: Springer)
[4]Dudley J M et al 2014 Nat. Photon. 8 755
[5]Akhmediev N et al 2016 J. Opt. 18 063001
[6]Akhmediev N et al 2009 Phys. Lett. A 373 2137
[7]Akhmediev N et al 2009 Phys. Lett. A 373 675
[8]Akhmediev N et al 2009 Phys. Rev. A 80 043818
[9]Kibler B et al 2010 Nat. Phys. 6 790
[10]Frisquet B et al 2013 Phys. Rev. X 3 041032
[11]Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[12]Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[13]Gelash A A and Zakharov V E 2014 Nonlinearity 27 R1
[14]Soto-Crespo J M et al 2016 Phys. Rev. Lett. 116 103901
[15]Zakharov V E et al 2009 Stud. Appl. Math. 122 219
[16]Kibler B et al 2015 Phys. Rev. X 5 041026
[17]Xu G et al 2019 Phys. Rev. Lett. 122 084101
[18]Jia H, Li B, Yang R and Tian J 2020 Nonlinear Dyn (in press)
[19]Akhmediev N et al 1985 Sov. Phys.-JETP 62 894
[20]Liu C et al 2019 J. Opt. Soc. Am. B 36 1294
[21]Akhmediev N and Ankiewicz A 1997 Solitons: Nolinear Pulses and Beams (Chapman and Hall, London)
[22]Gelash A A 2018 Phys. Rev. E 97 022208
[23]Trillo S and Conforti M 2019 Opt. Lett. 44 4275
[24]Conforti M et al 2018 Opt. Lett. 43 5291
[25]Zhang J H et al 2017 Proc. R. Soc. A 473 20160681
[26]Liu C et al 2017 Chaos 27 083120
[27]Liu C et al 2018 Chaos 28 083110
[28]Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201
[29]Ren Y et al 2018 Phys. Rev. E 98 062223
[30]Ren Y et al 2018 Commun. Nonlinear Sci. & Numer. Simul. 63 161
[31]Nakamura A and Chen H H 1980 J. Phys. Soc. Jpn. 49 813
[32]Kakei S et al 1995 J. Phys. Soc. Jpn. 64 1519
[33]Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[34]DeMartini F et al 1967 Phys. Rev. 164 312
[35]Grischkowsky D et al 1973 Phys. Rev. Lett. 31 422
[36]Moses J and Wise F W 2006 Phys. Rev. Lett. 97 073903
[37]Moses J et al 2007 Phys. Rev. A 76 021802(R)
[38]Kedziora D J et al 2015 Chaos 25 103114
[39]Wadati M et al 1979 J. Phys. Soc. Jpn. 46 1965
[40]Fokas A S 1995 Physica D 87 145
[41]Lenells J 2009 Stud. Appl. Math. 123 215
[42]Lenells J and Fokas A S 2009 Nonlinearity 22 11
[43]Wadati M and Sogo K 1983 J. Phys. Soc. Jpn. 52 394
[44]Chen S H and Song L Y 2014 Phys. Lett. A 378 1228
[45]He J S et al 2012 Phys. Soc. Jpn. 81 124007
[46]Xu S W et al 2015 Math. Methods Appl. Sci. 38 1106
[47]Wang L et al 2015 Chaos 25 063111
[48]Faddeev L D and Takhtajan L A 2007 (Heidelberg: Springer)
[49](a) Kuznetsov E A 1977 Sov. Phys. Dokl. 22 575
[50]Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[51]He J S et al 2016 Phys. Rev. E 93 062201
[52]He J S et al 2017 Rom. J. Phys. 62 203
[53]Liu C et al 2014 Phys. Rev. A 89 055803
[54]Liu C et al 2016 Phys. Rev. E 94 042221
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 040501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 040501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 040501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 040501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 040501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040501
Viewed
Full text


Abstract