Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 038503    DOI: 10.1088/0256-307X/37/3/038503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Performance Germanium Waveguide Photodetectors on Silicon
Xiu-Li Li1,2, Zhi Liu1,2**, Lin-Zhi Peng1,2, Xiang-Quan Liu1,2, Nan Wang1,2, Yue Zhao1,2, Jun Zheng1,2, Yu-Hua Zuo1,2, Chun-Lai Xue1,2, Bu-Wen Cheng1,2
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Xiu-Li Li, Zhi Liu, Lin-Zhi Peng et al  2020 Chin. Phys. Lett. 37 038503
Download: PDF(1183KB)   PDF(mobile)(1182KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Germanium waveguide photodetectors with 4 μm widths and various lengths are fabricated on silicon-on-insulator substrates by selective epitaxial growth. The dependence of the germanium layer length on the responsivity and bandwidth of the photodetectors is studied. The optimal length of the germanium layer to achieve high bandwidth is found to be approximately 8 μm. For the $4 \times 8$ ${\mu}$m$^{2}$ photodetector, the dark current density is as low as 5 mA/cm$^{2}$ at $-1$ V. At a bias of $-1$ V, the 1550 nm optical responsivity is as high as 0.82 A/W. Bandwidth as high as 29 GHz is obtained at $-4$ V. Clear opened eye diagrams at 50 Gbits/s are demonstrated at 1550 nm.
Received: 26 November 2019      Published: 22 February 2020
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206404), the National Natural Science Foundation of China (Grant Nos. 61435013, 61534005, 61534004, 61604146, and 61774143), the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-JSC022), and the Beijing Education Commission Project (Grant No. SQKM201610005008).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/038503       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/038503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu-Li Li
Zhi Liu
Lin-Zhi Peng
Xiang-Quan Liu
Nan Wang
Yue Zhao
Jun Zheng
Yu-Hua Zuo
Chun-Lai Xue
Bu-Wen Cheng
[1]Won R and Paniccia M 2010 Nat. Photon. 4 498
[2]Marpaung D, Yao J and Capmany J 2019 Nat. Photon. 13 80
[3]Michel J, Liu J and Kimerling L C 2010 Nat. Photon. 4 527
[4]Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y and Laval S 2009 Opt. Express 17 6252
[5]DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R and Davids P S 2011 Opt. Express 19 24897
[6]Liao S, Feng N N, Feng D, Dong P, Shafiiha R, Kung C C, Liang H, Qian W, Liu Y, Fong J, Cunningham J E, Luo Y and Asghari M 2011 Opt. Express 19 10967
[7]Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H and Fedeli J M 2012 Opt. Express 20 1096
[8]Chen H, Verheyen P, De Heyn P, Lepage G, De Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G and Van Campenhout J 2016 Opt. Express 24 4622
[9]Cui J and Zhou Z 2017 Opt. Lett. 42 5141
[10]Yin T, Cohen R, Morse M M, Sarid G, Chetrit Y, Rubin D and Paniccia M J 2007 Opt. Express 15 13965
[11]Ahn D, Hong C Y, Liu J, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J and Kartner F X 2007 Opt. Express 15 3916
[12]Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Berlin: Wiley-Interscience)
[13]Liu H X, Wu X F, Hu S G and Shi L C 2010 Chin. Phys. B 19 057303
[14]Goyal P and Kaur G 2018 Arab. J. Sci. Eng. 43 415
[15]Nunley T N, Fernando N S, Samarasingha N, Moya J M, Nelson C M, Medina A A and Zollner S 2016 J. Vac. Sci. & Technol. B 34 061205
[16]Li Y M , Hu W X , Cheng B W , Liu Z and Wang Q M 2012 Chin. Phys. Lett. 29 034205
[17]Schmid M, Kaschel M, Gollhofer M, Oehme M, Werner J, Kasper E and Schulze J 2012 Thin Solid Films 525 110
[18]Liu Z, Yang F, Wu W, Cong H, Zheng J, Li C, Xue C, Cheng B and Wang Q 2017 J. Lightwave Technol. 35 5306
[19]Oehme M, Werner J, Kasper E, Jutzi M and Berroth M 2006 Appl. Phys. Lett. 89 071117
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 038503
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 038503
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 038503
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 038503
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 038503
[6] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 038503
[7] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 038503
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 038503
[9] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 038503
[10] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 038503
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 038503
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 038503
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 038503
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 038503
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 038503
Viewed
Full text


Abstract