CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Performance Germanium Waveguide Photodetectors on Silicon |
Xiu-Li Li1,2, Zhi Liu1,2**, Lin-Zhi Peng1,2, Xiang-Quan Liu1,2, Nan Wang1,2, Yue Zhao1,2, Jun Zheng1,2, Yu-Hua Zuo1,2, Chun-Lai Xue1,2, Bu-Wen Cheng1,2 |
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Xiu-Li Li, Zhi Liu, Lin-Zhi Peng et al 2020 Chin. Phys. Lett. 37 038503 |
|
|
Abstract Germanium waveguide photodetectors with 4 μm widths and various lengths are fabricated on silicon-on-insulator substrates by selective epitaxial growth. The dependence of the germanium layer length on the responsivity and bandwidth of the photodetectors is studied. The optimal length of the germanium layer to achieve high bandwidth is found to be approximately 8 μm. For the $4 \times 8$ ${\mu}$m$^{2}$ photodetector, the dark current density is as low as 5 mA/cm$^{2}$ at $-1$ V. At a bias of $-1$ V, the 1550 nm optical responsivity is as high as 0.82 A/W. Bandwidth as high as 29 GHz is obtained at $-4$ V. Clear opened eye diagrams at 50 Gbits/s are demonstrated at 1550 nm.
|
|
Received: 26 November 2019
Published: 22 February 2020
|
|
PACS: |
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206404), the National Natural Science Foundation of China (Grant Nos. 61435013, 61534005, 61534004, 61604146, and 61774143), the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-JSC022), and the Beijing Education Commission Project (Grant No. SQKM201610005008). |
|
|
[1] | Won R and Paniccia M 2010 Nat. Photon. 4 498 | [2] | Marpaung D, Yao J and Capmany J 2019 Nat. Photon. 13 80 | [3] | Michel J, Liu J and Kimerling L C 2010 Nat. Photon. 4 527 | [4] | Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y and Laval S 2009 Opt. Express 17 6252 | [5] | DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R and Davids P S 2011 Opt. Express 19 24897 | [6] | Liao S, Feng N N, Feng D, Dong P, Shafiiha R, Kung C C, Liang H, Qian W, Liu Y, Fong J, Cunningham J E, Luo Y and Asghari M 2011 Opt. Express 19 10967 | [7] | Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H and Fedeli J M 2012 Opt. Express 20 1096 | [8] | Chen H, Verheyen P, De Heyn P, Lepage G, De Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G and Van Campenhout J 2016 Opt. Express 24 4622 | [9] | Cui J and Zhou Z 2017 Opt. Lett. 42 5141 | [10] | Yin T, Cohen R, Morse M M, Sarid G, Chetrit Y, Rubin D and Paniccia M J 2007 Opt. Express 15 13965 | [11] | Ahn D, Hong C Y, Liu J, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J and Kartner F X 2007 Opt. Express 15 3916 | [12] | Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Berlin: Wiley-Interscience) | [13] | Liu H X, Wu X F, Hu S G and Shi L C 2010 Chin. Phys. B 19 057303 | [14] | Goyal P and Kaur G 2018 Arab. J. Sci. Eng. 43 415 | [15] | Nunley T N, Fernando N S, Samarasingha N, Moya J M, Nelson C M, Medina A A and Zollner S 2016 J. Vac. Sci. & Technol. B 34 061205 | [16] | Li Y M , Hu W X , Cheng B W , Liu Z and Wang Q M 2012 Chin. Phys. Lett. 29 034205 | [17] | Schmid M, Kaschel M, Gollhofer M, Oehme M, Werner J, Kasper E and Schulze J 2012 Thin Solid Films 525 110 | [18] | Liu Z, Yang F, Wu W, Cong H, Zheng J, Li C, Xue C, Cheng B and Wang Q 2017 J. Lightwave Technol. 35 5306 | [19] | Oehme M, Werner J, Kasper E, Jutzi M and Berroth M 2006 Appl. Phys. Lett. 89 071117 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|