Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 034301    DOI: 10.1088/0256-307X/37/3/034301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of Mean Flow on Acoustic Wave Propagation in a Duct with a Periodic Array of Helmholtz Resonators
Jiang-Wei Liu1, Dian-Long Yu1, Hai-Bin Yang1**, Hui-Jie Shen2, Ji-Hong Wen1
1Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073
2College of Power Engineering, Naval University of Engineering, Wuhan 430033
Cite this article:   
Jiang-Wei Liu, Dian-Long Yu, Hai-Bin Yang et al  2020 Chin. Phys. Lett. 37 034301
Download: PDF(513KB)   PDF(mobile)(510KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sound propagation properties of a duct system with Helmholtz resonators (HRs) are affected by mean flow. Previous studies have tended to focus on the effects of mean flows on acoustic response of a duct system with a finite number of HRs. Employing an empirical impedance model, we present a modified transfer matrix method for studying the effect of mean flow on the complex band structure of an air duct system with an infinite periodic array of HRs. The efficiency of the modified transfer matrix is demonstrated by comparison between an example of transmission response calculation for a finite single HR loaded duct and the finite element simulation result calculated using the COMSOL software. Numerical results are presented to analyze the effect of mean flow on the band structure and transmission loss of the sound wave in the duct system. It is hoped that this study will provide theoretical guidance for acoustic wave propagation of HR silencer in the presence of mean flow.
Received: 18 September 2019      Published: 22 February 2020
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.50.+y (Noise: its effects and control)  
  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11872371, 51705529, 11991032, and 11991034).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/034301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/034301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiang-Wei Liu
Dian-Long Yu
Hai-Bin Yang
Hui-Jie Shen
Ji-Hong Wen
[1]Meyer E, Mechel F and Kurtze G 1958 J. Acoust. Soc. Am. 30 165
[2]Anderson J S 1977 J. Sound Vib. 52 423
[3]Hersh S, Walker B and Bucka M 1978 AIAA Paper pp 78–1124 (Seattle 10–12 July 1978)
[4]Kooi J W and Sarin S L 1981 AIAA Paper p 81–1998 (Palo Alto 23–25 June 1981)
[5]Yu D L, Shen H J, Liu J W et al 2018 Chin. Phys. B 27 064301
[6]Lockerby D A, Carpenter P W and Davies C 2007 Flow Turbul. Combust. 78 205
[7]Cummings A 1987 J. Sound Vib. 115 321
[8]Seo S H, Kim Y H and Kim K J 2018 Appl. Acoust. 138 188
[9]Shi X F, Mak C M and Yang J 2013 Open J. Acoust. 3 25
[10]Shin Y C 1998 The Effect of Flow on Helmholtz Resonators (PhD dissertation, Loughborough University of Technology)
[11]Wen J H, Shen H J, Yu D L and Wen X S 2013 Phys. Lett. A 377 2199
[12]Shen H J, Yu D L, Tang Z Y et al 2019 Acta Phys. Sin. 68 144301 (in Chinese)
[13]Ronneberger D 1972 J. Sound Vib. 24 133
[14]Narayana R K and Munjal M L 1986 J. Sound Vib. 108 283
[15]Goldman A and Panton R L 1976 J. Acoust. Soc. Am. 60 1397
[16]Yu D L, Du C Y, Shen H J et al 2017 Chin. Phys. Lett. 34 076202
[17]Selamet E, Selamet A, Iqbal A and Kim H 2011 SAE Int. 01 1521
[18]Hussein M I and Frazier M J 2010 J. Appl. Phys. 108 093506
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 034301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 034301
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 034301
[4] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 034301
[5] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 034301
[6] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 034301
[7] Dian-Long Yu, Chun-Yang Du, Hui-Jie Shen, Jiang-Wei Liu, Ji-Hong Wen. An Analysis of Structural-Acoustic Coupling Band Gaps in a Fluid-Filled Periodic Pipe[J]. Chin. Phys. Lett., 2017, 34(7): 034301
[8] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 034301
[9] Zhen-Dong Wei, Bao-Ren Li, Jing-Min Du, Gang Yang. Theoretical and Experimental Investigation of Flexural Vibration Transfer Properties of High-Pressure Periodic Pipe[J]. Chin. Phys. Lett., 2016, 33(04): 034301
[10] CAI Li, WEN Ji-Hong, YU Dian-Long, LU Zhi-Miao, WEN Xi-Sen. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers[J]. Chin. Phys. Lett., 2014, 31(09): 034301
[11] XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng. The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(4): 034301
[12] WANG Jian-Wei, WANG Gang, CHEN Sheng-Bing, WEN Ji-Hong. Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches[J]. Chin. Phys. Lett., 2012, 29(6): 034301
[13] LIU Xiao-Bo, ZHANG Jian-Run, LI Pu, LE Van-Quynh. Energy Measurement of Bubble Bursting Based on Vibration Signals[J]. Chin. Phys. Lett., 2012, 29(6): 034301
[14] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 034301
[15] CHEN Sheng-Bing**, WEN Ji-Hong, WANG Gang, HAN Xiao-Yun, WEN Xi-Sen . Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts[J]. Chin. Phys. Lett., 2011, 28(9): 034301
Viewed
Full text


Abstract