FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Asymptotical Locking Tomography of High-Dimensional Entanglement |
Ling-Jun Kong1,2, Rui Liu3, Wen-Rong Qi3, Zhou-Xiang Wang3, Shuang-Yin Huang3, Chenghou Tu3, Yongnan Li3**, Hui-Tian Wang1,2** |
1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 3Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071
|
|
Cite this article: |
Ling-Jun Kong, Rui Liu, Wen-Rong Qi et al 2020 Chin. Phys. Lett. 37 034204 |
|
|
Abstract High-dimensional (HD) entanglement provides a very promising way of transcending the limitations of the two-dimensional entanglement between qubits for increasing channel capacity in many quantum protocols. In the pursuit of capitalizing on the HD entangled states, one of the central issues is to unambiguously and comprehensively quantify and reconstruct them. The full quantum state tomography is a unique solution, but it is undesirable and even impractical because the measurements increase rapidly in $d^4$ for a bipartite $d$-dimensional quantum state. Here we present a very efficient and practical tomography method—asymptotical locking tomography (ALT), which can harvest full information of bipartite $d$-dimensional entangled states by very few measurements less than $2d^2$ only. To showcase the validity and reasonableness of our ALT, we carry out the test with the two-photon spin-orbital angular momentum hyperentangled states in a four-dimensional subspace. Besides high-efficiency and practicality, our ALT is also universal and can be generalized into multipartite HD entanglement and other quantum systems.
|
|
Received: 10 February 2020
Published: 22 February 2020
|
|
PACS: |
42.30.Va
|
(Image forming and processing)
|
|
42.30.-d
|
(Imaging and optical processing)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant Nos. 2017YFA0303800 and 2017YFA0303700, the National Natural Science Foundation of China under Grant Nos. 11534006, 91750202, 11774183 and 11674184, and the Collaborative Innovation Center of Extreme Optics. |
|
|
[1] | Schrödinger E 1935 Naturwissenschaften 23 823 | [2] | Trimmer J D 1980 Proc. Am. Philos. Soc. 124 323 | [3] | Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 117 210502 | [4] | Anderson B E, Sosa-Martinez H, Riofrío C A, Deutsch I H and Jessen P S 2015 Phys. Rev. Lett. 114 240401 | [5] | Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R and Roos C F 2014 Phys. Rev. Lett. 112 100403 | [6] | Kelly J, Barends R, Fowler A G, Megrant A, Jeffrey E, White T C, Sank D, Mutus J Y, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Hoi I C, Neill C, O'Malley P J J, Quintana C, Roushan P, Vainsencher A, Wenner J, Cleland A N and Martinis J M 2015 Nature 519 66 | [7] | Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628 | [8] | Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y H 1995 Phys. Rev. Lett. 75 4337 | [9] | James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 | [10] | Kim Y H, Kulik S P and Shih Y H 2001 Phys. Rev. Lett. 86 1370 | [11] | Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501 | [12] | Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282 | [13] | Williams B P, Sadlier R J and Humble T S 2017 Phys. Rev. Lett. 118 050501 | [14] | Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575 | [15] | Lo H K and Chau H F 1999 Science 283 2050 | [16] | Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891 | [17] | Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305 | [18] | Huber M and Pawlowski M 2013 Phys. Rev. A 88 032309 | [19] | Krenn M, Malik M, Erhard M and Zeilinger A 2017 Philos. Trans. R. Soc. A 375 20150442 | [20] | Martin A, Guerreiro T, Tiranov A, Designolle S, Fröwis F, Brunner N, Huber M and Gisin N 2017 Phys. Rev. Lett. 118 110501 | [21] | Bernhard C, Bessire B, Feurer T and Stefanov A 2013 Phys. Rev. A 88 032322 | [22] | Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303 | [23] | Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406 | [24] | Giovannini D, Romero J, Leach J, Dudley A, Forbes A and Padgett M J 2013 Phys. Rev. Lett. 110 143601 | [25] | Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sanchez-Soto L L, Karimi E and Boyd R W 2015 Phys. Rev. X 5 041006 | [26] | Bavaresco J, Valencia N H, Klöckl C, Pivoluska M, Erker P, Friis N, Malik M and Huber M 2018 Nat. Phys. 14 1032 | [27] | Malik M, Erhard M, Huber M, Krenn M, Fickler R and Zeilinger A 2016 Nat. Photon. 10 248 | [28] | Erker P, Krenn M and Huber M 2017 Quantum 1 22 | [29] | Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905 | [30] | Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Wang Q, Tu C, Li Y and Wang H T 2019 Sci. Adv. 5 eaat9206 | [31] | Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401 | [32] | Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D, Bonneau D, Silverstone J W, Gong Q H, Acín A, Rottwitt K, Oxenløwe L K, O'Brien J L, Laing A and Thompson M G 2018 Science 360 285 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|