CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal |
Qi Wang1, Qianheng Du2, Cedomir Petrovic2**, Hechang Lei1** |
1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials $&$ Micro-nano Devices, Renmin University of China, Beijing 100872 2Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
|
|
Cite this article: |
Qi Wang, Qianheng Du, Cedomir Petrovic et al 2020 Chin. Phys. Lett. 37 027502 |
|
|
Abstract We report the growth of ternary half-Heusler MnPtSn single crystals and detailed study on its structural and physical properties. MnPtSn single crystal has a larger lattice parameter than that in polycrystal and it exhibits antiferromagnetism with transition temperature $T_{\rm N}$ at about 215 K, distinctly different from the ferromagnetism of MnPtSn polycrystal. Hall resistivity measurement indicates that the dominant carriers are hole-type and the nearly temperature-independent carrier concentration reaches about $2.86\times10^{22}$ cm$^{-3}$ at 5 K. Moreover, the carrier mobility is also rather low (4.7 cm$^{2}$$\cdot$V$^{-1}$s$^{-1}$ at 5 K). The above results strongly suggest that the significant Mn/Sn anti-site defects, i.e., the content of Mn in MnPtSn single crystal, play a vital role on structural, magnetic and transport properties.
|
|
Received: 05 December 2019
Published: 18 January 2020
|
|
PACS: |
75.50.Ee
|
(Antiferromagnetics)
|
|
75.47.Np
|
(Metals and alloys)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2018YFE0202600, 2016YFA0300504), the National Natural Science Foundation of China (Nos. 11574394, 11774423, 11822412), the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China (RUC) (Nos. 15XNLQ07, 18XNLG14, 19XNLG17), and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (DOE) under Contract No. DE-SC0012704. |
|
|
[1] | Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 | [2] | Galanakis I and Dederichs P H 2005 Half-metallic Alloys: Fundamentals and Applications (Berlin: Springer-Verlag) p 1 | [3] | Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315 | [4] | Hirohata A, Sagar J, Lari L, Fleet L R and Lazarov V K 2013 Appl. Phys. A 111 423 | [5] | Hirohata A and Takanashi K 2014 J. Phys. D 47 193001 | [6] | Felser C, Wollmann L, Chadov S, Fecher G H and Parkin S S P 2015 APL Mater. 3 041518 | [7] | Geldart D J W and Ganguly P 1970 Phys. Rev. B 1 3101 | [8] | Podgornykh S M, Streltsov S V, Kazantsev V A and Shreder E I 2007 J. Magn. Magn. Mater. 311 530 | [9] | de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 | [10] | Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152 | [11] | Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429 | [12] | Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1 | [13] | Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, Ebert H, Felser C and Kläui M 2014 Nat. Commun. 5 3974 | [14] | Jeong T, Weht R and Pickett W E 2005 Phys. Rev. B 71 184103 | [15] | Singh S, DSouza S W, Nayak J, Suard E, Chapon L, Senyshyn A, Petricek V, Skourski Y, Nicklas M, Felser C and Chadov S 2016 Nat. Commun. 7 12671 | [16] | Canfield P C, Thompson J D, Beyermann W P, Lacerda A, Hundley M F, Peterson E, Fisk Z and Ott H R 1991 J. Appl. Phys. 70 5800 | [17] | Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119 | [18] | Shekhar C, Kumar N, Grinenko V, Singh S, Sarkar R, Luetkens H, Wu S, Zhang Y, Komarek A C, Kampert E, Skourski Y, Wosnitza J, Schnelle W, McCollam A, Zeitler U, Kübler J, Yan B, Klauss H H, Parkin S S P and Felser C 2018 Proc. Natl. Acad. Sci. USA 115 9140 | [19] | Singha R, Roy S, Pariari A, Satpati B and Mandal P 2019 Phys. Rev. B 99 035110 | [20] | Otto M J, Feil H, van Woerden R A M, Wijngaard J, van der Valk P J, van Bruggen C F and Haas C 1987 J. Magn. Magn. Mater. 70 33 | [21] | Li Y, Ding B, Wang X, Zhang H, Wang W and Liu Z 2018 Appl. Phys. Lett. 113 062406 | [22] | Swekis P, Markou A, Kriegner D, Gayles J, Schlitz R, Schnelle W, Goennenwein S T B and Felser C 2019 Phys. Rev. Mater. 3 013001(R) | [23] | Vir P, Gayles J, Sukhanov A S, Kumar N, Damay F, Sun Y, Kübler J, Shekhar C and Felser C 2019 Phys. Rev. B 99 140406(R) | [24] | Liu Z H, Burigu A, Zhang Y J, Jafri H M, Ma X Q, Liu E K, Wang W H and Wu G H 2018 Scr. Mater. 143 122 | [25] | Buschow K H J, van Engen P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1 | [26] | Slater J C 1964 J. Chem. Phys. 41 3199 | [27] | Kroder J, Manna K, Kriegner D, Sukhanov A S, Liu E K, Borrmann H, Hoser A, Gooth J, Schnelle W, Inosov D S, Fecher G H and Felser C 2019 Phys. Rev. B 99 174410 | [28] | Simon E, Vida J G, Khmelevskyi S and Szunyogh L 2015 Phys. Rev. B 92 054438 | [29] | Jeon B, Koteswararao B, Park C B, Shu G J, Riggs S C, Moon E G, Chung S B, Chou F C and Kim K H 2016 Sci. Rep. 6 36970 | [30] | Sharma P A, Ahn J S, Hur N, Park S, Kim S B, Lee S, Park J G, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 177202 | [31] | Peacor S D, Cohn J L and Uher C 1991 Phys. Rev. B 43 8721 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|