Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 023401    DOI: 10.1088/0256-307X/37/2/023401
ATOMIC AND MOLECULAR PHYSICS |
Single- and Double-Electron Capture Processes in Low-Energy Collisions of N$^{4+}$ Ions with He
Kun Wang1, Xiao-Xia Wang1, Yi-Zhi Qu1**, Chun-Hua Liu2, Ling Liu3, Yong Wu3, Robert J. Buenker4
1College of Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049
2School of Physics, Southeast University, Nanjing 210094
3Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088
4Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitat Wuppertal, D-42097 Wuppertal, Germany
Cite this article:   
Kun Wang, Xiao-Xia Wang, Yi-Zhi Qu et al  2020 Chin. Phys. Lett. 37 023401
Download: PDF(764KB)   PDF(mobile)(742KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electron capture processes of N$^{4+}$(1$s^{2}2s$) colliding with He(1$s^{2}$) in the energy range of 10–1700 eV/amu using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. Total and state-selective single-electron capture and double-electron capture (SEC and DEC) cross sections are obtained and compared with other available studies. The results agree better with the experimental data in both trend and magnitude when the electron translation factor (ETF) effects are included. Our results indicate that both the SEC and DEC processes play important roles in the considered energy region. For the SEC processes, the N$^{3+}$(1$s^{2}2p^{2}$) + He$^{+}$(1$s$) states are the dominant capture states, and the N$^{2+}$(1$s^{2}2s2p^{2}$) + He$^{2+}$ states are the main DEC states.
Received: 13 November 2019      Published: 18 January 2020
PACS:  34.70.+e (Charge transfer)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11774344, 11474033 and 11574326, and the National Key Research and Development Program of China under Grant No. 2017YFA0402300.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/023401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/023401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Wang
Xiao-Xia Wang
Yi-Zhi Qu
Chun-Hua Liu
Ling Liu
Yong Wu
Robert J. Buenker
[1]Shimada M et al 2007 Nucl. Fusion 47 S1
[2]Loarte A et al 2007 Nucl. Fusion 47 S203
[3]Cravens T E 1997 Geophys. Res. Lett. 24 105
[4]Iwai T, Kaneko Y, Kimura M, Kobayashi N, Ohtani S, Okuno K, Takagi S, Tawara H and Tsurubuchi S 1982 Phys. Rev. A 26 105
[5]Hoekstra R, De Heer F J and Winter H 1987 Nucl. Instrum. Methods Phys. Res. Sect. B 23 104
[6]Okuno K, Soejima K and Kaneko Y 1991 Nucl. Instrum. Methods Phys. Res. Sect. B 53 387
[7]McLaughlin T K, Tanuma H, Hodgkinson J, McCullough R W and Gilbody H B 1993 J. Phys. B: At. Mol. Opt. Phys. 26 3871
[8]Ishii K, Itoh A and Okuno K 2004 Phys. Rev. A 70 042716
[9]Tergiman Y S and Bacchus-Montabonel M C 2001 Phys. Rev. A 64 042721
[10]Tergiman Y S and Bacchus-Montabonel M C 2001 Adv. Quantum Chem. 39 163
[11]Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
[12]Buenker R J and Phillips R A 1985 J. Mol. Struct.: THEOCHEM 123 291
[13]Dunning T H 1989 J. Chem. Phys. 90 1007
[14]Woon D E and Dunning T H 1994 J. Chem. Phys. 100 2975
[15]Buenker R J and Peyerimhoff S D 1974 Theor. Chim. Acta 35 33
[16]Buenker R J and Peyerimhoff S D 1975 Theor. Chim. Acta 39 217
[17]Buenker R J 1986 Int. J. Quantum Chem. 29 435
[18]Kramida A, Ralchenko Yu 2017 Reader J. NIST ASD Team. NIST At. Spectra Database (ver. 5.5.1)
[19]Herrero B, Cooper I L and Dickinson A S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5583
[20]Zygelman B and Dalgarno A 1986 Phys. Rev. A 33 3853
[21]Kimura M and Lane N F 1989 Adv. At. Mol. Phys. 26 79
[22]Johnson B R 1973 J. Comput. Phys. 13 445
[23]Heil T G, Butler S E and Dalgarno A 1981 Phys. Rev. A 23 1100
[24]Liu C H, Qu Y Z, Liu L, Wang J G, Li Y, Liebermann H P, Funke P and Buenker R J 2008 Phys. Rev. A 78 024703
[25]Liu C H, Liu L, Qu Y Z, Wang J G and Janev R K 2010 Phys. Rev. A 82 022710
[26]Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P and Buenker R J 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075202
[27]Errea L F, Mendez L and Riera A 1982 J. Phys. B 15 101
[28]Gargaud M, McCarroll R and Valiron P 1987 J. Phys. B 20 1555
[29]Bransden B H and McDowell M R C 1992 Charge Exchange and the Theory of Ion-Atom Collisions (Oxford: Clarendon)
[30]Errea L F, Harel C, Jouini H, Mendez L, Pons B and Riera A 1994 J. Phys. B: At. Mol. Opt. Phys. 27 3603
[31]Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A 58 1162
Related articles from Frontiers Journals
[1] Huihui Wang, Yuechun Jiao, Jianming Zhao, Liantuan Xiao, and Suotang Jia. Microwave Induced Ultralong-Range Charge Migration in a Rydberg Atom[J]. Chin. Phys. Lett., 2022, 39(1): 023401
[2] Xiao-Xia Wang, Kun Wang, Yi-Geng Peng, Chun-Hua Liu, Ling Liu, Yong Wu, Heinz-Peter Liebermann, Robert J. Buenker, and Yi-Zhi Qu. Ab Initio Study of Single- and Double-Electron Capture Processes in Collisions of He$^{2+}$ Ions and Ne Atoms[J]. Chin. Phys. Lett., 2021, 38(11): 023401
[3] Shuai Qin, Cong-Zhang Gao, Wandong Yu, and Yi-Zhi Qu. Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory[J]. Chin. Phys. Lett., 2021, 38(6): 023401
[4] Yong Gao, Xiao-Long Zhu, Shao-Feng Zhang, Rui-Tian Zhang, Wen-Tian Feng, Da-Long Guo, Bin Li, Dong-Mei Zhao, Han-Bing Wang, Zhong-Kui Huang, Shun-Cheng Yan, Dong-Bin Qian, Xin-Wen Ma. Signature of Single Binary Encounter in Intermediate Energy He$^{2+}$–Ar Collisions$^*$[J]. Chin. Phys. Lett., 2016, 33(07): 023401
[5] ZHOU Yu, QU Yi-Zhi**, LIU Chun-Hua, LIU Xiao-Ju, . Radiative Decay of Proton Colliding with Rb at Low Energies[J]. Chin. Phys. Lett., 2011, 28(3): 023401
[6] WANG Xue-Rong, LIU Ling, WANG Jian-Guo. Electron Capture Process in Collisions of Proton with Excited State of Helium[J]. Chin. Phys. Lett., 2010, 27(12): 023401
[7] XUE Ying-Li, YU De-Yang, LU Rong-Chun, SHAO Cao-Jie, RUAN Fang-Fang, YANG Zhi-Hu, CAI Xiao-Hong. Two Electron Transfer and Stabilization in Slow O6+ and Rare-Gas Collisions[J]. Chin. Phys. Lett., 2010, 27(7): 023401
[8] DING Bao-Wei, HU Bi-Tao. Ionization and Charge Transfer of Atomic Hydrogen by Highly Charged Ions[J]. Chin. Phys. Lett., 2010, 27(4): 023401
[9] DU Gong-He, REN Zhao-Yu, GUO Ping, ZHENG Ji-Ming. Halopentacenes: Promising Candidates for Organic Semiconductors[J]. Chin. Phys. Lett., 2009, 26(7): 023401
[10] FU Hong-Bin, WANG Bao-Hong, DING Bao-Wei, LIU Zhao-Yuan. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles[J]. Chin. Phys. Lett., 2009, 26(2): 023401
[11] CHEN Lan-Fang, ZHU Xiao-Long, MA Xin-Wen, LIU Ling, HE Bin, WANG Jian-Guo, Ratko JANEV. Theoretical Investigation on Excitation, Ionization and Capture in H(1s,2s) +H(1s, 2s) Collisions[J]. Chin. Phys. Lett., 2008, 25(8): 023401
[12] WANG Bao-Hong, FU Hong-Bin, DING Bao-Wei, YU De-Yang, SUN Guang-Zhi, LIU Zhao-Yuan. Transfer Ionization of Helium in Collisions with Cq+ and Oq+ (q =1-3)[J]. Chin. Phys. Lett., 2008, 25(7): 023401
[13] DING Bao-Wei, CHEN Xi-Meng, FU Hong-Bin, LIU Zhao-Yuan. Classical Study of Transfer and Ionization in A2++He Collisions[J]. Chin. Phys. Lett., 2008, 25(2): 023401
[14] ZHU Nan-Fei, LI Yong-Xiang, YU Xiao-Feng,. Luminescence Spectra of YGG:RE3+,Bi3+ RE= Eu and Tb) and Energy Transfer from Bi3+ to RE3+[J]. Chin. Phys. Lett., 2008, 25(2): 023401
[15] LIU Ling, WANG Jian-Guo. Neutralization and Detachment in H+--H- Collisions[J]. Chin. Phys. Lett., 2007, 24(11): 023401
Viewed
Full text


Abstract