CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics |
Xingyong Huang1,2,3, Liujiang Zhou3*, Luo Yan3, You Wang1, Wei Zhang1, Xiumin Xie1, Qiang Xu1, and Hai-Zhi Song1,3* |
1Southwest Institute of Technical Physics, Chengdu 610041, China 2Faculty of Science, Yibin University, Yibin 644007, China 3Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
|
|
Cite this article: |
Xingyong Huang, Liujiang Zhou, Luo Yan et al 2020 Chin. Phys. Lett. 37 127101 |
|
|
Abstract Two-dimensional (2D) materials and their corresponding van der Waals (vdW) heterostructures are considered as promising candidates for highly efficient solar cell applications. A series of 2D HfX$_{2}$ (X = Cl, Br, I) monolayers are proposed, via first-principle calculations. The vibrational phonon spectra and molecular dynamics simulation results indicate that HfX$_{2}$ monolayers possess dynamical and thermodynamical stability. Moreover, their electronic structure shows that their Heyd–Scuseria–Ernzerhof(HSE06)-based band values (1.033–1.475 eV) are suitable as donor systems for excitonic solar cells (XSCs). The material's significant visible-light absorbing capability (${\sim}10^{5}$ cm$^{-1}$) and superior power conversion efficiency (${\sim}$20%) are demonstrated by establishing a reasonable type II vdW heterostructure. This suggests the significant potential of HfX$_{2}$ monolayers as a candidate material for XSCs.
|
|
Received: 10 September 2020
Published: 08 December 2020
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405302). |
|
|
[1] | Yue G, Deng Z, Wang S et al. 2019 Chin. Phys. Lett. 36 057201 |
[2] | Essig S, Allebé C, Remo T et al. 2017 Nat. Energy 2 17144 |
[3] | Cheng K, Guo Y, Han N et al. 2018 Appl. Phys. Lett. 112 143902 |
[4] | Fang J, Zhou Z, Xiao M et al. 2020 InfoMat 2 291 |
[5] | Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257 |
[6] | Zhou L, Kou L, Sun Y et al. 2015 Nano Lett. 15 7867 |
[7] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[8] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[9] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[10] | Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 |
[11] | Nosé S 1984 J. Chem. Phys. 81 511 |
[12] | Mann S, Rani P, Kumar R et al. 2015 AIP Conf. Proc. 1675 030035 |
[13] | Krukau A V, Vydrov O A, Izmaylov A F et al. 2006 J. Chem. Phys. 125 224106 |
[14] | Molina-Sánchez A and Wirtz L 2011 Phys. Rev. B 84 155413 |
[15] | Cahangirov S, Topsakal M, Aktürk E et al. 2009 Phys. Rev. Lett. 102 236804 |
[16] | Lü T Y, Liao X X, Wang H Q et al. 2012 J. Mater. Chem. 22 10062 |
[17] | Lai K, Yan C L, Gao L Q et al. 2018 J. Phys. Chem. C 122 7656 |
[18] | Zhou L J, Zhang Y F and Wu L M 2013 Nano Lett. 13 5431 |
[19] | Kaur S, Kumar A, Srivastava S et al. 2018 J. Phys. Chem. C 122 26032 |
[20] | Scharber M C, Mühlbacher D, Koppe M et al. 2006 Adv. Mater. 18 789 |
[21] | Green M A, Emery K, Hishikawa Y et al. 2015 Prog. Photovoltaics 23 1 |
[22] | Green M A, Emery K, Hishikawa Y et al. 2017 Prog. Photovoltaics 25 3 |
[23] | Zhao J, Li Y, Yang G et al. 2016 Nat. Energy 1 15027 |
[24] | Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289 |
[25] | Miao N, Xu B, Bristowe N C et al. 2017 J. Am. Chem. Soc. 139 11125 |
[26] | Lu X, Zhao Z, Li K et al. 2016 RSC Adv. 6 86976 |
[27] | Jiao N, Zhou P, Xue L et al. 2019 J. Phys.: Condens. Matter 31 075702 |
[28] | Zhang X, Zhao X, Wu D et al. 2016 Adv. Sci. 3 1600062 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|