CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$ |
Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao* |
Inner Mongolia Key Lab of Nanoscience and Nanotechnology, and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
Cite this article: |
Qiong Wu , Xin Wu , Yue-Shun Zhao et al 2020 Chin. Phys. Lett. 37 118401 |
|
|
Abstract We report a distinctive way for designing lead-free films with high energy storage performance. By inserting different single perovskite cells into Bi$_{4}$Ti$_{3}$O$_{12}$, $P$–$E$ hysteresis loops present larger maximum polarization, higher breakdown strength and smaller slim-shaped area. We prepared 0.15Bi$_{7}$Fe$_{3}$Ti$_{3}$O$_{21}$-0.5Bi$_{4}$Sr$_{3}$Ti$_{6}$O$_{21}$-0.35Bi$_{4}$Ba$_{3}$Ti$_{6}$O$_{21}$ solid solution ferroelectric films employing the sol-gel method, and obtained high energy storage density of 132.5 J/cm$^{3}$ and efficiency of 78.6% while maintaining large maximum polarization of 112.3 μC/cm$^{2}$ and a high breakdown electric field of 3700 kV/cm. Moreover, the energy storage density and efficiency exhibit stability over the temperature range from 20 ℃ to 125 ℃, and anti-fatigue stability maintains up to 10$^{8}$ cycles. The films with a simple preparation method and high energy storage performance are likely to become candidates for high-performance energy storage materials.
|
|
Received: 31 July 2020
Published: 08 November 2020
|
|
PACS: |
84.60.Ve
|
(Energy storage systems, including capacitor banks)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11864028 and 12074204). |
|
|
[1] | Yu Y J, Tu J B and Singh R N 2001 J. Am. Ceram. Soc. 84 333 |
[2] | Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H and Nan C W 2018 Nat. Commun. 9 1813 |
[3] | Li Q, Han K, Gadinski M R, Zhang G and Wang Q 2014 Adv. Mater. 26 6244 |
[4] | Wei Z and An D 2019 Acta Phys. Sin. 68 037501 (in Chinese) |
[5] | Yao Z H, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T and Liu H 2017 Adv. Mater. 29 1601727 |
[6] | Palneedi H, Peddigari M, Hwang G T, Jeong D Y and Ryu J 2018 Adv. Funct. Mater. 28 1803665 |
[7] | Chen J, Tang Z, Yang B and Zhao S 2018 Appl. Phys. Lett. 113 153904 |
[8] | Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S and Cheng Z 2019 Adv. Energy Mater. 9 1803949 |
[9] | Zhang T, Li W, Zhao Y, Yu Y and Fei W 2018 Adv. Funct. Mater. 28 1706211 |
[10] | Zhou M, Liang R, Zhou Z and Dong X 2018 J. Mater. Chem. C 6 8528 |
[11] | Liu Z, Lu T, Ye J, Wang G, Dong X, Withers R and Liu Y 2018 Adv. Mater. Technol. 3 1800111 |
[12] | Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H and Nan C W 2019 Science 365 578 |
[13] | Guo F, Jiang N, Yang B and Zhao S 2019 Appl. Phys. Lett. 114 253901 |
[14] | Yang B, Guo M, Tang X, Wei R, Hu L, Yang J, Song W, Dai J, Lou X, Zhu X and Sun Y 2019 J. Mater. Chem. C 7 1888 |
[15] | Zhang S T, Chen Y F, Sun H P, Pan X Q, Tan W S, Liu Z G and Ming N B 2003 J. Appl. Phys. 94 544 |
[16] | Irie H, Miyayama M and Kudo T 2001 J. Appl. Phys. 90 4089 |
[17] | Zhang X, Shen Y, Zhang Q, Gu L, Hu Y, Du J, Lin Y and Nan C W 2015 Adv. Mater. 27 819 |
[18] | Liu H B 2018 Chin. Phys. B 27 127701 |
[19] | Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R and Shinde A B 2013 Appl. Phys. Lett. 103 122901 |
[20] | Zhang S T, Chen Y F, Sun H P, Pan X Q, Tan W S, Liu Z G and Ming N B 2003 J. Phys.: Condens. Matter 15 1223 |
[21] | Sun S, Wang G, Huang Y, Wang J, Peng R and Lu Y 2014 RSC Adv. 4 30440 |
[22] | Raghavan C M, Kim J W, Choi J Y, Kim J W and Kim S S 2015 Appl. Surf. Sci. 346 201 |
[23] | Sun S, Ling Y, Peng R, Liu M, Mao X, Chen X, Knize R J and Lu Y 2013 RSC Adv. 3 18567 |
[24] | Song D P, Yang J, Wang Y X, Yang J and Zhu X B 2017 Ceram. Int. 43 17148 |
[25] | Zhou J, Wu F X, Chen Y B, Zhang S T and Chen Y F 2012 J. Mater. Res. 27 2956 |
[26] | Du C L, Zhang S T, Lu M H, Gu Z B, Cheng G X, Wang J and Chen Y F 2006 Chin. Phys. 15 854 |
[27] | Jin C, Zhu J, Mao X Y, He J H, Shen J C and Chen X B 2007 Integr. Ferroelectr. 85 39 |
[28] | Song D P, Yang J, Yang B B, Wang Y, Chen L Y, Wang F and Zhu X B 2019 J. Appl. Phys. 125 134101 |
[29] | Zhou Y, Zou X, You L, Guo R, Shiuh Lim Z, Chen L, Yuan G and Wang J 2014 Appl. Phys. Lett. 104 012903 |
[30] | Xing W, Ma Y, Ma Z, Bai Y, Chen J and Zhao S 2014 Smart Mater. Struct. 23 085030 |
[31] | Zhao R and Yang H 2018 Acta Phys. Sin. 67 156101 (in Chinese) |
[32] | Li J L, Li F, Xu Z and Zhang S J 2018 Adv. Mater. 30 1802155 |
[33] | Neusel C and Schneider G A 2014 J. Mech. Phys. Solids 63 201 |
[34] | Joshi P C and Krupanidhi S B 1993 Appl. Phys. Lett. 62 1928 |
[35] | Chen Z, Luo Z, Huang C, Qi Y, Yang P, You L, Hu C, Wu T, Wang J, Gao C, Sritharan T and Chen L 2011 Adv. Funt. Mater. 21 133 |
[36] | Wang H and Ren M F 2007 Acta Phys. Sin. 56 7315 (in Chinese) |
[37] | Noguchi Y, Miyayama M and Kudo T 2001 Phys. Rev. B 63 214102 |
[38] | Shvartsman V V, Lupascu D C and Green D J 2012 J. Am. Ceram. Soc. 95 1 |
[39] | Tang Z, Chen J, Yang B and Zhao S 2019 Appl. Phys. Lett. 114 163901 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|