Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 118401    DOI: 10.1088/0256-307X/37/11/118401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$
Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao*
Inner Mongolia Key Lab of Nanoscience and Nanotechnology, and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Cite this article:   
Qiong Wu , Xin Wu , Yue-Shun Zhao  et al  2020 Chin. Phys. Lett. 37 118401
Download: PDF(1636KB)   PDF(mobile)(1646KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a distinctive way for designing lead-free films with high energy storage performance. By inserting different single perovskite cells into Bi$_{4}$Ti$_{3}$O$_{12}$, $P$–$E$ hysteresis loops present larger maximum polarization, higher breakdown strength and smaller slim-shaped area. We prepared 0.15Bi$_{7}$Fe$_{3}$Ti$_{3}$O$_{21}$-0.5Bi$_{4}$Sr$_{3}$Ti$_{6}$O$_{21}$-0.35Bi$_{4}$Ba$_{3}$Ti$_{6}$O$_{21}$ solid solution ferroelectric films employing the sol-gel method, and obtained high energy storage density of 132.5 J/cm$^{3}$ and efficiency of 78.6% while maintaining large maximum polarization of 112.3 μC/cm$^{2}$ and a high breakdown electric field of 3700 kV/cm. Moreover, the energy storage density and efficiency exhibit stability over the temperature range from 20 ℃ to 125 ℃, and anti-fatigue stability maintains up to 10$^{8}$ cycles. The films with a simple preparation method and high energy storage performance are likely to become candidates for high-performance energy storage materials.
Received: 31 July 2020      Published: 08 November 2020
PACS:  84.60.Ve (Energy storage systems, including capacitor banks)  
  68.55.-a (Thin film structure and morphology)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11864028 and 12074204).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/118401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/118401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiong Wu 
Xin Wu 
Yue-Shun Zhao 
and Shifeng Zhao
[1] Yu Y J, Tu J B and Singh R N 2001 J. Am. Ceram. Soc. 84 333
[2] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H and Nan C W 2018 Nat. Commun. 9 1813
[3] Li Q, Han K, Gadinski M R, Zhang G and Wang Q 2014 Adv. Mater. 26 6244
[4] Wei Z and An D 2019 Acta Phys. Sin. 68 037501 (in Chinese)
[5] Yao Z H, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T and Liu H 2017 Adv. Mater. 29 1601727
[6] Palneedi H, Peddigari M, Hwang G T, Jeong D Y and Ryu J 2018 Adv. Funct. Mater. 28 1803665
[7] Chen J, Tang Z, Yang B and Zhao S 2018 Appl. Phys. Lett. 113 153904
[8] Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S and Cheng Z 2019 Adv. Energy Mater. 9 1803949
[9] Zhang T, Li W, Zhao Y, Yu Y and Fei W 2018 Adv. Funct. Mater. 28 1706211
[10] Zhou M, Liang R, Zhou Z and Dong X 2018 J. Mater. Chem. C 6 8528
[11] Liu Z, Lu T, Ye J, Wang G, Dong X, Withers R and Liu Y 2018 Adv. Mater. Technol. 3 1800111
[12] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H and Nan C W 2019 Science 365 578
[13] Guo F, Jiang N, Yang B and Zhao S 2019 Appl. Phys. Lett. 114 253901
[14] Yang B, Guo M, Tang X, Wei R, Hu L, Yang J, Song W, Dai J, Lou X, Zhu X and Sun Y 2019 J. Mater. Chem. C 7 1888
[15] Zhang S T, Chen Y F, Sun H P, Pan X Q, Tan W S, Liu Z G and Ming N B 2003 J. Appl. Phys. 94 544
[16] Irie H, Miyayama M and Kudo T 2001 J. Appl. Phys. 90 4089
[17] Zhang X, Shen Y, Zhang Q, Gu L, Hu Y, Du J, Lin Y and Nan C W 2015 Adv. Mater. 27 819
[18] Liu H B 2018 Chin. Phys. B 27 127701
[19] Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R and Shinde A B 2013 Appl. Phys. Lett. 103 122901
[20] Zhang S T, Chen Y F, Sun H P, Pan X Q, Tan W S, Liu Z G and Ming N B 2003 J. Phys.: Condens. Matter 15 1223
[21] Sun S, Wang G, Huang Y, Wang J, Peng R and Lu Y 2014 RSC Adv. 4 30440
[22] Raghavan C M, Kim J W, Choi J Y, Kim J W and Kim S S 2015 Appl. Surf. Sci. 346 201
[23] Sun S, Ling Y, Peng R, Liu M, Mao X, Chen X, Knize R J and Lu Y 2013 RSC Adv. 3 18567
[24] Song D P, Yang J, Wang Y X, Yang J and Zhu X B 2017 Ceram. Int. 43 17148
[25] Zhou J, Wu F X, Chen Y B, Zhang S T and Chen Y F 2012 J. Mater. Res. 27 2956
[26] Du C L, Zhang S T, Lu M H, Gu Z B, Cheng G X, Wang J and Chen Y F 2006 Chin. Phys. 15 854
[27] Jin C, Zhu J, Mao X Y, He J H, Shen J C and Chen X B 2007 Integr. Ferroelectr. 85 39
[28] Song D P, Yang J, Yang B B, Wang Y, Chen L Y, Wang F and Zhu X B 2019 J. Appl. Phys. 125 134101
[29] Zhou Y, Zou X, You L, Guo R, Shiuh Lim Z, Chen L, Yuan G and Wang J 2014 Appl. Phys. Lett. 104 012903
[30] Xing W, Ma Y, Ma Z, Bai Y, Chen J and Zhao S 2014 Smart Mater. Struct. 23 085030
[31] Zhao R and Yang H 2018 Acta Phys. Sin. 67 156101 (in Chinese)
[32] Li J L, Li F, Xu Z and Zhang S J 2018 Adv. Mater. 30 1802155
[33] Neusel C and Schneider G A 2014 J. Mech. Phys. Solids 63 201
[34] Joshi P C and Krupanidhi S B 1993 Appl. Phys. Lett. 62 1928
[35] Chen Z, Luo Z, Huang C, Qi Y, Yang P, You L, Hu C, Wu T, Wang J, Gao C, Sritharan T and Chen L 2011 Adv. Funt. Mater. 21 133
[36] Wang H and Ren M F 2007 Acta Phys. Sin. 56 7315 (in Chinese)
[37] Noguchi Y, Miyayama M and Kudo T 2001 Phys. Rev. B 63 214102
[38] Shvartsman V V, Lupascu D C and Green D J 2012 J. Am. Ceram. Soc. 95 1
[39] Tang Z, Chen J, Yang B and Zhao S 2019 Appl. Phys. Lett. 114 163901
Related articles from Frontiers Journals
[1] Qiubo Guo, Shuai Han, Yaxiang Lu, Liquan Chen, and Yong-Sheng Hu. Low-Temperature Aqueous Na-Ion Batteries: Strategies and Challenges of Electrolyte Design[J]. Chin. Phys. Lett., 2023, 40(2): 118401
[2] Fei Xie , Yaxiang Lu, Liquan Chen , and Yong-Sheng Hu. Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries[J]. Chin. Phys. Lett., 2021, 38(11): 118401
[3] Bin Xu, Yu-Sheng Wang, Na-Hong Song, Jing Zhang, Meng Li, Lin Yi. Sc-Decorated WS$_{2}$ Nanoribbons as Hydrogen Storage Media[J]. Chin. Phys. Lett., 2016, 33(01): 118401
[4] WANG Xue-Qing, WANG Yu-Sheng, WANG Yu-Cang, WANG Fei, SUN Qiang, JIA Yu. Ultrathin Carbon Nanotubes for Efficient Energy Storage: a First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(2): 118401
[5] YU Peng-Fei, CUI Zhong-Hui, MENG Jian-Wei, GUO Xiang-Xin. Variation of Ti Valence with Lithium Content in Lithiated/Delithiated Li4Ti5O12 Studied by X-Ray Absorption near the Edge Structure[J]. Chin. Phys. Lett., 2013, 30(3): 118401
[6] LEI Hong-Wen, ZHANG Hong, GONG Min, WU Wei-Dong. A Potential Hydrogen-Storage Media: C2H4 and C5H5 Molecules Doped with Rare Earth Atoms[J]. Chin. Phys. Lett., 2012, 29(12): 118401
[7] WANG Yu-Sheng, YUAN Peng-Fei, LI Meng, SUN Qiang, JIA Yu** . Hydrogen Storage Materials Based on Single-Layer Aluminum Nitride Nanostructures[J]. Chin. Phys. Lett., 2011, 28(11): 118401
Viewed
Full text


Abstract