Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 118501    DOI: 10.1088/0256-307X/37/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Surface Modification for WSe$_{2}$ Based Complementary Electronics
Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu*
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Cite this article:   
Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu 2020 Chin. Phys. Lett. 37 118501
Download: PDF(801KB)   PDF(mobile)(791KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-performance WSe$_{2}$ complementary transistors are demonstrated on an individual flake by ozone exposure, which relies on the charge transfer mechanism. This technology is readily feasible for modulating the conductivity type in WSe$_{2}$, and the p–n junction presents a high on-off ratio of 10$^{4}$. Based on robust p-type transistors and matched output current of n-type WSe$_{2}$ transistors, the complementary inverter achieves a high voltage gain of 19.9. Therefore, this strategy may provide an avenue for development of high-performance complementary electronics.
Received: 11 August 2020      Published: 08 November 2020
PACS:  85.35.-p (Nanoelectronic devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.Bd (Nanocrystalline materials)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703704 and 2018YFB0406603), the National Natural Science Foundation of China (Grant Nos. 61851403, 51872084, 61704052, 61811540408, 51872084, and 61704051), the Key Research and Development Plan of Hunan Province (Grant No. 2018GK2064), and the Natural Science Foundation of Hunan Province (Grant Nos. 2017RS3021 and 2017JJ3033).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/118501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Liang Zhang 
Xu-Ming Zou 
and Xing-Qiang Liu
[1] Radisavljevic B et al. 2011 Nat. Nanotechnol. 6 147
[2] Hsu S A et al. 2013 Proc. IEEE 101 1638
[3] Fiori G et al. 2014 Nat. Nanotechnol. 9 768
[4] Wang H et al. 2012 Nano Lett. 12 4674
[5] Fang H et al. 2012 Nano Lett. 12 3788
[6] Das S et al. 2013 Nano Lett. 13 100
[7] Zhou C et al. 2016 Adv. Funct. Mater. 26 4223
[8] Sahin H et al. 2013 Phys. Rev. B 87 165409
[9] Yamamoto M et al. 2015 Nano Lett. 15 2067
[10] Yamamoto M et al. 2016 Nano Lett. 16 2720
[11] Li H et al. 2014 Acc. Chem. Res. 47 1067
[12] Lopez-Sanchez O et al. 2013 Nat. Nanotechnol. 8 497
[13] Yin Z et al. 2012 ACS Nano 6 74
[14] Zhao W et al. 2013 ACS Nano 7 791
[15] del Corro E et al. 2014 ACS Nano 8 9629
[16] Kang D H et al. 2015 ACS Nano 9 1099
[17] Movva H C et al. 2015 ACS Nano 9 10402
[18] Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186
[19] Suriyasena Liyanage L et al. 2014 Nano Lett. 14 1884
[20] Chen K et al. 2014 APL Mater. 2 092504
[21] Liu Y et al. 2015 Nano Lett. 15 4979
[22] Tan C et al. 2016 Appl. Phys. Lett. 108 083112
[23] Wang S F et al. 2016 Phys. Chem. Chem. Phys. 18 4304
[24] Liu H et al. 2014 ACS Nano 8 1031
[25] Li S L et al. 2014 ACS Nano 8 12836
[26] Xue H et al. 2018 Adv. Funct. Mater. 28 1804388
[27] Han C et al. 2017 Nano Lett. 17 4122
[28] Yu L L et al. 2015 Nano Lett. 15 4928
[29] Sun J C et al. 2020 Adv. Mater. 32 1906499
[30] Tosun M et al. 2014 ACS Nano 8 4948
[31] Guo N et al. 2020 Adv. Sci. 7 1901637
Related articles from Frontiers Journals
[1] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 118501
[2] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 118501
[3] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 118501
[4] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 118501
[5] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 118501
[6] Da-Ming Zhou, Yun-Sheng Deng, Cui-Feng Ying, Yue-Chuan Zhang, Yan-Xiao Feng, Qi-Meng Huang, Li-Yuan Liang, De-Qiang Wang. Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling[J]. Chin. Phys. Lett., 2016, 33(10): 118501
[7] SHU Yi, TIAN He, WANG Zhe, ZHAO Hai-Ming, MI Wen-Tian, LI Yu-Xing, CAO Hui-Wen, REN Tian-Ling. Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film[J]. Chin. Phys. Lett., 2015, 32(11): 118501
[8] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 118501
[9] ZHOU Ju-Mei, GAO Xiao-Hong, ZHANG Hong-Liang. Lateral-Coupled Junctionless IZO-Based Electric-Double-Layer Thin-Film Transistors Gated by Solid-State Phosphosilicate Glass Electrolyte[J]. Chin. Phys. Lett., 2015, 32(03): 118501
[10] WU Guo-Dong, ZHANG Jin, WAN Xiang. Junctionless Coplanar-Gate Oxide-Based Thin-Film Transistors Gated by Al2O3 Proton Conducting Films on Paper Substrates[J]. Chin. Phys. Lett., 2014, 31(10): 118501
[11] ZHANG Jin, WU Guo-Dong. Ultralow-Voltage Electric-Double-Layer Oxide-Based Thin-Film Transistors with Faster Switching Response on Flexible Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 118501
[12] TANG Shi-Yu, LI Run, OU Xin, XU Han-Ni, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. TixSb2Te Thin Films for Phase Change Memory Applications[J]. Chin. Phys. Lett., 2014, 31(07): 118501
[13] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 118501
[14] LI Run, TANG Shi-Yu, BAI Gang, YIN Qiao-Nan, LAN Xue-Xin, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. GeTe4 as a Candidate for Phase Change Memory Application[J]. Chin. Phys. Lett., 2013, 30(5): 118501
[15] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 118501
Viewed
Full text


Abstract