CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Diffraction-Limited Imaging with a Graphene Metalens |
Xueyan Li1,2, Han Lin2*, Yuejin Zhao1*, and Baohua Jia2,3* |
1Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China 2Centre for Translational Atomaterials, Swinburne University of Technology. P.O. Box 218, Hawthorn, VIC 3122, Australia 3The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
|
|
Cite this article: |
Xueyan Li, Han Lin, Yuejin Zhao et al 2020 Chin. Phys. Lett. 37 106801 |
|
|
Abstract Planar graphene metalens has demonstrated advantages of ultrathin thickness (200 nm), high focusing resolution (343 nm) and efficiency ($>$32%) and robust mechanical strength and flexibility. However, diffraction-limited imaging with such a graphene metalens has not been realized, which holds the key to designing practical integrated imaging systems. In this work, the imaging rule for graphene metalenses is first derived and theoretically verified by using the Rayleigh-Sommerfeld diffraction theory to simulate the imaging performance of the 200 nm ultrathin graphene metalens. The imaging rule is applicable to graphene metalenses in different immersion media, including water or oil. Based on the theoretical prediction, high-resolution imaging using the graphene metalens with diffraction-limited resolution (500 nm) is demonstrated for the first time. This work opens the possibility for graphene metalenses to be applied in particle tracking, microfluidic chips and biomedical devices.
|
|
Received: 12 July 2020
Published: 29 September 2020
|
|
PACS: |
68.65.Pq
|
(Graphene films)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
Fund: Supported by the Scholarship of China Scholarship Council (Grant No. 201706030189), the Industrial Transformation Training Centres Scheme (Grant No. IC180100005), and the National Natural Science Foundation of China (Grant No. 61935001). |
|
|
[1] | Kostuk R K, Goodman J W and Hesselink L 1985 Appl. Opt. 24 2851 |
[2] | Parazzoli C G, Greegor R B, Nielsen J A, Thompson M A et al. 2004 Appl. Phys. Lett. 84 3232 |
[3] | Kou Q, Yesilyurt I, Studer V, Belotti M, Cambril E and Chen Y 2004 Microelectron. Eng. 73 876 |
[4] | Rossi M, Kunz R E and Herzig H P 1995 Appl. Opt. 34 5996 |
[5] | Booth M, Andrade D, Burke D, Patton B and Zurauskas M 2015 Microscopy 64 251 |
[6] | Arbabi A, Horie Y, Ball A J, Bagheri M and Faraon A 2015 Nat. Commun. 6 7069 |
[7] | O'Shea D C, Suleski T J, Kathman A D and Prather D W 2004 Diffractive Optics: Design, Fabrication and Test (London: SPIE Press) |
[8] | Turunen J and Wyrowski F 1998 Diffractive Optics for Industrial and Commercial Applications (New York: Wiley-VCH) |
[9] | Yu N and Capasso F 2014 Nat. Mater. 13 139 |
[10] | Li X, Xiao S, Cai B, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940 |
[11] | Shen F and Wang A 2006 Appl. Opt. 45 1102 |
[12] | McMahon M D, Berglund A J, Carmichael P, McClelland J J and Liddle J A 2009 ACS Nano 3 609 |
[13] | Ragan T, Huang H and So P 2006 J. Fluoresc. 16 325 |
[14] | Yang Y, Lin H, Zhang B Y, Zhang Y, Zheng X, Yu A et al. 2019 ACS Photon. 6 1033 |
[15] | Cao G, Lin H, Fraser S, Zheng X, Del Rosal B, Gan Z et al. 2019 ACS Appl. Mater. & Interfaces 11 20298 |
[16] | Cao G, Gan X, Lin H and Jia B 2018 Opto-Electron. Adv. 1 180012 |
[17] | Zheng X, Jia B, Lin H, Qiu L, Li D and Gu M 2015 Nat. Commun. 6 8433 |
[18] | Hecht E 2002 Optics (San Francisco: Addison Wesley) |
[19] | Meijering E, Dzyubachyk O and Smal I 2012 Methods Enzymology 504 183 |
[20] | Li X, Wei S, Cao G, Lin H, Zhao Y and Jia B 2020 Photon. Res. 8 1316 |
[21] | Wang S, Ouyang X, Feng Z, Cao Y, Gu M and Li X 2018 Opto-Electron. Adv. 1 170002 |
[22] | Yang Y, Noviana E, Nguyen M P, Geiss B J, Dandy D S and Henry C S 2017 Anal. Chem. 89 71 |
[23] | Cate D M, Adkins J A, Mettakoonpitak J and Henry C S 2015 Anal. Chem. 87 19 |
[24] | Gabrielli L H, Liu D, Johnson S G and Lipson M 2012 Nat. Commun. 3 1217 |
[25] | Wang Y, Yun W and Jacobsen C 2003 Nature 424 50 |
[26] | Becker H and Locascio L E 2002 Talanta 56 267 |
[27] | Sbalzarini I F and Koumoutsakos P 2005 J. Struct. Biol. 151 182 |
[28] | Gloge D and Marcuse D 1969 J. Opt. Soc. Am. 59 1629 |
[29] | Gu M 2000 Advanced Optical Imaging Theory (Berlin: Springer) |
[30] | Lin H, Sturmberg B C, Lin K T, Yang Y, Zheng X, Chong T K et al. 2019 Nat. Photon. 13 270 |
[31] | Yang Y, Wu J, Xu X, Liang Y, Chu S T, Little B E et al. 2018 APL Photon. 3 120803 |
[32] | Zheng X, Lin H, Yang T and Jia B 2017 J. Phys. D 50 074003 |
[33] | Kong X T, Khan A A, Kidambi P R, Deng S, Yetisen A K, Dlubak B et al. 2015 ACS Photon. 2 200 |
[34] | Zheng X, Jia B, Chen X and Gu M 2014 Adv. Mater. 26 2699 |
[35] | Li P and Taubner T 2012 ACS Nano 6 10107 |
[36] | Moghaddam A G and Zareyan M 2010 Phys. Rev. Lett. 105 146803 |
[37] | Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015 |
[38] | Cheianov V V, Fal'ko V and Altshuler B 2007 Science 315 1252 |
[39] | Cumming B P, Turner M D, Schröder-Turk G E, Debbarma S, Luther-Davies B and Gu M 2014 Opt. Express 22 689 |
[40] | Jia B, Li J and Gu M 2007 Aust. J. Chem. 60 484 |
[41] | Cheng Y, Tsai H L, Sugioka K and Midorikawa K 2006 Appl. Phys. A 85 11 |
[42] | Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|