CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$ |
Aolin Li1, Wenzhe Zhou1, Jiangling Pan2, Qinglin Xia2, Mengqiu Long2,3, and Fangping Ouyang1,2,3* |
1State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, China 2School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, China 3School of Physics and Technology, Xinjiang University, Urumqi 830046, China
|
|
Cite this article: |
Aolin Li, Wenzhe Zhou, Jiangling Pan et al 2020 Chin. Phys. Lett. 37 107101 |
|
|
Abstract Stacking-dependent magnetism in van der Waals materials has caught intense interests. Based on the first principle calculations, we investigate the coupling between stacking orders and interlayer magnetic orders in bilayer H-VSe$_{2}$. It is found that there are two stable stacking orders in bilayer H-VSe$_{2}$, named AB-stacking and A$^{\prime}$B-stacking. Under standard DFT framework, the A$^{\prime}$B-stacking prefers the interlayer AFM order and is semiconductive, whereas the AB-stacking prefers the FM order and is metallic. However, under the DFT+$U$ framework both the stacking orders prefer the interlayer AFM order and are semiconductive. By detailedly analyzing this difference, we find that the interlayer magnetism originates from the competition between antiferromagnetic interlayer super-superexchange and ferromagnetic interlayer double exchange, in which both the interlayer Se-4$p_{z}$ orbitals play a crucial role. In the DFT+$U$ calculations, the double exchange is suppressed due to the opened bandgap, such that the interlayer magnetic orders are decoupled with the stacking orders. Based on this competition mechanism, we propose that a moderate hole doping can significantly enhance the interlayer double exchange, and can be used to switch the interlayer magnetic orders in bilayer VSe$_{2}$. This method is also applicable to a wide range of semiconductive van der Waals magnets.
|
|
Received: 09 July 2020
Published: 29 September 2020
|
|
PACS: |
71.70.Gm
|
(Exchange interactions)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51272291), the Distinguished Young Scholar Foundation of Hunan Province (Grant No. 2015JJ1020), the Young Scholar Foundation of Hunan Province (Grant No. 2016JJ3142), the Central South University Research Fund for Sheng-Hua Scholars, Central South University State Key Laboratory of Powder Metallurgy, and the Fundamental Research Funds for the Central Universities of Central South University. |
|
|
[1] | Woomer A H, Druffel D L, Sundberg J D, Pawlik J T and Warren S C 2019 J. Am. Chem. Soc. 141 10300 |
[2] | Zhao Y D, Qiao J S, Yu P, Hu Z X, Lin Z Y, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399 |
[3] | Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y and Ji W 2019 Phys. Rev. B 99 144401 |
[4] | Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658 |
[5] | Gmitra M, Kochan D, Hogl P and Fabian J 2016 Phys. Rev. B 93 155104 |
[6] | Zhou W Z, Chen J Y, Yang Z X, Liu J W and Ouyang F P 2019 Phys. Rev. B 99 075160 |
[7] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 |
[8] | Zhou X Y, Wang C, Zhou L W, Pan Y H, Lu Z Y, Wan X G, Wang X Q and Ji W 2020 Phys. Rev. B 102 020402 |
[9] | Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303 |
[10] | Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D and Xu X D 2019 Nat. Mater. 18 1298 |
[11] | Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 |
[12] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94 |
[13] | Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 |
[14] | O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125 |
[15] | Hirahara T, Eremeev S V, Shirasawa T, Okuyama Y, Kubo T, Nakanishi R, Akiyama R, Takayama A, Hajiri T, Ideta S, Matsunami M, Sumida K, Miyamoto K, Takagi Y, Tanaka K, Okuda T, Yokoyama T, Kimura S, Hasegawa S and Chulkov E V 2017 Nano Lett. 17 3493 |
[16] | Tang Q K, Liu C Y, Zhang B B and Jie W Q 2018 J. Solid State Chem. 262 53 |
[17] | Gonzalez-Arraga L A, Lado J L, Guinea F and San-Jose P 2017 Phys. Rev. Lett. 119 107201 |
[18] | Wang X Q and Wu Z G 2017 Phys. Chem. Chem. Phys. 19 2148 |
[19] | Spiecker E, Schmid A K, Minor A M, Dahmen U, Hollensteiner S and Jager W 2006 Phys. Rev. Lett. 96 086401 |
[20] | Pan H 2014 J. Phys. Chem. C 118 13248 |
[21] | Tong W Y and Duan C G 2017 npj Quantum Mater. 2 47 |
[22] | Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511 |
[23] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[24] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[25] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[26] | Bucko T, Hafner J, Lebegue S and Angyan J G 2010 J. Phys. Chem. A 114 11814 |
[27] | Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 |
[28] | Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 |
[29] | Kasai H, Tolborg K, Sist M, Zhang J W, Hathwar V R, Filso M O, Cenedese S, Sugimoto K, Overgaard J, Nishibori E and Iversen B B 2018 Nat. Mater. 17 249 |
[30] | Zhao G M 2000 Phys. Rev. B 62 11639 |
[31] | Schlottmann P 2003 Phys. Rev. B 67 174419 |
[32] | Anderson P W 1950 Phys. Rev. 79 350 |
[33] | Goodenough J B 1955 Phys. Rev. 100 564 |
[34] | Zhang C X, Santosh K C, Nie Y F, Liang C P, Vandenberghe W G, Longo R C, Zheng Y P, Kong F T, Hong S, Wallace R M and Cho K 2016 ACS Nano 10 7370 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|