Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 017103    DOI: 10.1088/0256-307X/37/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Rejuvenation in Hot-Drawn Micrometer Metallic Glassy Wires
Jie Dong1,2, Yi-Hui Feng3, Yong Huan3, Jun Yi4, Wei-Hua Wang1,2,5, Hai-Yang Bai1,2,5**, Bao-An Sun1,5**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
4Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444
5Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Jie Dong, Yi-Hui Feng, Yong Huan et al  2020 Chin. Phys. Lett. 37 017103
Download: PDF(1089KB)   PDF(mobile)(1098KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an enhanced rejuvenation in hot-drawn micrometer metallic glassy wires (MG wires) with the size reduction. Compared to metallic glasses (MGs) in bulk form, the modulus and hardness for the micro-scale MG wires, tested by nanoindentation methods, are much lower and decrease with the decreasing size, with a maximum decrease of $\sim $26% in modulus and $\sim $17% in hardness. This pronounced rejuvenation is evidenced by the larger sub-$T_{\rm g}$ relaxation enthalpy of the MG wires. The pronounced rejuvenation is physically related to the higher energy state induced by a combined effect of severely thermomechanical shearing and freezing the shear flow into a constrained small-volume region. Our results reveal that the internal states and properties of MGs can be dramatically changed by a proper modulation of temperature, flow stress and size.
Received: 28 November 2019      Published: 23 December 2019
PACS:  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos. 2018YFA0703603, 2017YFB0903902, and 2016YFB0300501, the National Natural Science Foundation of China under Grant Nos. 51822107, 11790291, 51671121, and 51761135125, the National Natural Science Foundation of Guangdong Province under Grant No. 2019B030302010, and the Key Research Program of Frontier Sciences (QYZDY-SSW-JSC017), and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB30000000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/017103       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/017103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Dong
Yi-Hui Feng
Yong Huan
Jun Yi
Wei-Hua Wang
Hai-Yang Bai
Bao-An Sun
[1]Debenedetti P G and Stillinger F H 2001 Nature 410 259
[2]Greer A L and Sun Y H 2016 Philos. Mag. 96 1643
[3]Sun Y H, Concustell A and Greer A L 2016 Nat. Rev. Mater. 1 16039
[4]Pan J, Wang Y X, Guo Q D, Zhang, Greer A L and Li Y 2018 Nat. Commun. 9 560
[5]Hufnagel T C 2015 Nat. Mater. 14 867
[6]Ketov S V, Sun Y H, Nach m S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V and Carpenter M A 2015 Nature 524 200
[7]Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T and Yang Y 2016 Acta Mater. 121 266
[8]Wang W H 2012 Prog. Mater. Sci. 57 487
[9]Greer A L 1995 Science 267 1947
[10]Johnson W L 1999 MRS Bull. 24 42
[11]Wang W H 2005 J. Non-Cryst. Solids 351 1481
[12]Khonik S V, Granato A V, Joncich D M, Pompe A and Khonik V A 2008 Phys. Rev. Lett. 100 065501
[13]Liu Y, Wu H, Liu C T, Zhang Z and Keppens V 2008 Appl. Phys. Lett. 93 151915
[14]Tong Y, Dmowski W, Bei H, Yokoyama Y and Egami T 2018 Acta Mater. 148 384
[15]Tong Y, Dmowski W, Yokoyama Y, Wang G, Liaw P K and Egami T 2013 Scr. Mater. 69 570
[16]Meng F Q, Tsuchiya K and Yokoyama Y 2014 Mater. Trans. 55 220
[17]Sun Y H, Concustell A, Carpenter M A, Qiao J C, Rayment A W and Greer A L 2016 Acta Mater. 112 132
[18]Zhang Q D, Wang L F, Zhao Y, Jiang Y and Zu F Q 2016 Mater. Lett. 164 48
[19]Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y and Wang W H 2010 Adv. Eng. Mater. 12 1117
[20]Oliver W C and Pharr G M 1986 J. Mater. Res. 1 3
[21]Wagner H, Bedorf D, Kuchemann S, Schwabe M, Zhang B, Arnold W and Samwer K 2011 Nat. Mater. 10 439
[22]Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A and Chen M W 2011 Phys. Rev. Lett. 106 125504
[23]Zhu F, Nguyen H K, Song S X, Aji P B, Hirata A, Wang H, Nakajima K and Chen M W 2016 Nat. Commun. 7 11516
[24]Yu H B, Shen X, Wang Z, Gu L, Wang W H and Bai H Y 2012 Phys. Rev. Lett. 108 015504
[25]Lu Z, Jiao W, Wang W H and Bai H Y 2014 Phys. Rev. Lett. 113 045501
Related articles from Frontiers Journals
[1] GAO Xi-Li, ZHANG Xiao-Zhong, WAN Cai-Hua, WANG Ji-Min. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions[J]. Chin. Phys. Lett., 2012, 29(2): 017103
[2] WANG Dan, SUN Min-Hua, FENG Li-Feng, ZHANG Qiang, XIN Li-Juan, LIUJia, BU Wen-Bin. Increasing Superplasticity and Strong Dynamic Behaviour of Zr--Cu--Ni--Al Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(7): 017103
[3] X. H. Du, J. C. Huang. A Modified Glass Formation Criterion for Various Glass Forming Liquids with Higher Reliability[J]. Chin. Phys. Lett., 2007, 24(5): 017103
[4] DONG Gui-Fang, LIU Qing-Di, WANG Li-Duo, QIU Yong. Improvement of Performance of Organic Thin-Film Transistors through Zone Annealing[J]. Chin. Phys. Lett., 2005, 22(8): 017103
[5] HU Yue-Hui, CHEN Guang-Hua, ZHOU Jian-Er, RONG Yan-Dong, LI Ying, SONG Xue-Mei, ZHANG Wen-Li, DING Yi, GAO Zhuo, MA Zhan-Jie, ZHOU Huai-En, ZHU Xiu-Hong. Nanomorph Silicon Thin Films Prepared by Using an HW-MWECR CVD System[J]. Chin. Phys. Lett., 2005, 22(5): 017103
[6] HUANG Shi-Yong, ZHANG Li-De, LI Guang-Hai, DAI Zhen-Hong, ZHU Xiao-Guang, QU Feng-Qi, FU Sheng-Qi, ZHONG Yu-Rong, MIAO Y. Effect of Substrates on CuInSe2 Nanoparticle Thin Films by Radio Frequency Reactive Sputtering[J]. Chin. Phys. Lett., 2002, 19(8): 017103
Viewed
Full text


Abstract