CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
An Incremental Model for Defect Production upon Cascade Overlapping |
Yi Wang**, Wensheng Lai, Jiahao Li |
The Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084
|
|
Cite this article: |
Yi Wang, Wensheng Lai, Jiahao Li 2020 Chin. Phys. Lett. 37 016103 |
|
|
Abstract An analytic incremental model is proposed to predict the defect production upon cascade overlapping. By resolving the coupled annealing events during cascade overlapping, this model handles cascade overlapping with multiple pre-existing defects of different sizes and number densities. The model is first parameterized and then applied to bcc-Fe. The proposed model satisfyingly reproduces the defect production obtained by molecular dynamics simulations with various radiation damage levels and defect cluster size distributions. The present model provides an essential description of the primary source of radiation damage, especially for high dose irradiation, and could be used in conjunction with reactive diffusion models for better understanding of radiation damage.
|
|
Received: 08 October 2019
Published: 23 December 2019
|
|
PACS: |
61.82.Bg
|
(Metals and alloys)
|
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (No. 2017YFB0702201) and the National Natural Science Foundation of China (No. 51571129). |
|
|
[1] | Kinchin G H and Pease R S 1955 Rep. Prog. Phys. 18 1 | [2] | Robinson M T and Torrens I M 1974 Phys. Rev. B 9 5008 | [3] | Norgett M J, Robinson M T and Torrens I M 1975 Nucl. Eng. Des. 33 50 | [4] | Nordlund K, Zinkle S J, Sand A E et al 2018 J. Nucl. Mater. 512 450 | [5] | Averback R S and Merkle K L 1977 Phys. Rev. B 16 3860 | [6] | Gao F, Bacon D J, Calder A F et al 1996 J. Nucl. Mater. 230 47 | [7] | Stoller R E and Guiriec S G 2004 J. Nucl. Mater. 329 1238 | [8] | Nordlund K and Averback R S 1997 Phys. Rev. B 56 2421 | [9] | Byggmästar J, Granberg F, Sand A E et al 2019 J. Phys.: Condens. Matter 31 245402 | [10] | Granberg F, Byggmästar J and Nordlund K 2019 Eur. Phys. J. B 92 146 | [11] | Fellman A, Sand A E, Byggmästar J et al 2019 J. Phys.: Condens. Matter 31 405402 | [12] | Byggmästar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530 | [13] | Granberg F, Nordlund K, Ullah M W et al 2016 Phys. Rev. Lett. 116 135504 | [14] | Ullah M W, Aidhy D S, Zhang Y et al 2016 Acta Mater. 109 17 | [15] | Odette G R and Lucas G E 2001 JOM 53 18 | [16] | Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121 | [17] | Jansson V and Malerba L 2013 J. Nucl. Mater. 443 274 | [18] | Jourdan T and Crocombette J P 2018 Comput. Mater. Sci. 145 235 | [19] | Malerba L, Marinica M C, Anento N et al 2010 J. Nucl. Mater. 406 19 | [20] | De A, Domain C, Becquart C S et al 2018 J. Phys.: Condens. Matter 30 405701 | [21] | Plimpton S 1995 J. Comput. Phys. 117 1 | [22] | Fu C C, Torre J D, Willaime F et al 2004 Nat. Mater. 4 68 | [23] | Takaki S, Fuss J, Kuglers H et al 1983 Radiat. Eff. 79 87 | [24] | Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 15012 | [25] | Nordlund K, Zinkle S J, Sand A E et al 2018 Nat. Commun. 9 1084 | [26] | Jansson V, Chiapetto M and Malerba L 2013 J. Nucl. Mater. 442 341 | [27] | Sand A E, Byggmästar J, Zitting A et al 2018 J. Nucl. Mater. 511 64 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|