Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 090301    DOI: 10.1088/0256-307X/36/9/090301
GENERAL |
Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation
Sheng-Li Zhang1**, Song Yang2,1
1Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081
2Beijing Institute of Space Mechanics & Electricity, Beijing 100076
Cite this article:   
Sheng-Li Zhang, Song Yang 2019 Chin. Phys. Lett. 36 090301
Download: PDF(597KB)   PDF(mobile)(609KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation. An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values. As an example, we apply our method to the derivation of three-mode symmetric continuous variable entangled state. Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.
Received: 09 April 2019      Published: 23 August 2019
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Hk (Quantum communication)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574400 and 11204379, the Beijing Institute of Technology Research Fund Program for Young Scholars, and the NSFC-ICTP Proposal under Grant No 11981240356.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/090301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Li Zhang
Song Yang
[1]Braunstein S and van Loock P 2005 Rev. Mod. Phys. 77 513
[2]Weedbrook C, Pirandola S, García-Patrón R, Cerf N, Ralph T, Shapiro J and Lloyd S 2012 Rev. Mod. Phys. 84 621
[3]Eisert J, Scheel S and Plenio M 2002 Phys. Rev. Lett. 89 137903
[4]Fiurášek J 2002 Phys. Rev. Lett. 89 137904
[5]Giedke G and Cirac J 2002 Phys. Rev. A 66 032316
[6]Braunstein S 1998 Phys. Rev. Lett. 80 4084
[7]Allegra M, Giorda P and Paris M 2010 Phys. Rev. Lett. 105 100503
[8]Adesso G, Dell'Anno F, Siena S, Illuminati F and Souza L 2009 Phys. Rev. A 79 040305
[9]Dell'Anno F, De Siena S, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301
[10]Garcá-Patrón R, Fiuráek J, Cerf N, Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 93 130409
[11]Nha H and Carmichael H 2004 Phys. Rev. Lett. 93 020401
[12]Zhang S L and van Loock P 2011 Phys. Rev. A 84 062309
[13]Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324
[14]Zhang S L and Zhang X D 2018 Phys. Rev. A 97 043830
[15]Yang S, Zhang S L, Zou X B, Bi S W and Lin X L 2013 Phys. Rev. A 87 024302
[16]Fiurášek J 2011 Phys. Rev. A 84 012335
[17]Chen X 2007 Phys. Rev. A 76 022309
[18]Perelomov A 1986 Generalized Coherent States (Berlin: Springer Verlag)
[19]Hoelscher-Obermaier J and van Loock P 2010 arXiv:1001.2225
[20]Tatham R, Mišta J, Adesso G and Korolkova N 2012 Phys. Rev. A 85 022326
[21]van Loock P and Braunstein S 2000 Phys. Rev. Lett. 84 3482
[22]van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[23]Aoki T et al 2003 Phys. Rev. Lett. 91 080404
[24]Vidal G and Werner R 2002 Phys. Rev. A 65 032314
[25]Adesso G and Illuminati F 2005 Phys. Rev. Lett. 95 150503
[26]Zhang S L, Guo J S, Shi J H and Zou X B 2016 Chin. Phys. Lett. 33 070303
[27]Adesso G, Serafini A and Illuminati F 2005 Open Syst. Inf. Dyn. 12 189
[28]Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 090301
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090301
[4] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 090301
[5] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 090301
[6] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 090301
[7] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 090301
[8] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 090301
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 090301
[10] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 090301
[11] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 090301
[12] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 090301
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 090301
[14] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 090301
[15] Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang. Biased Random Number Generator Based on Bell's Theorem[J]. Chin. Phys. Lett., 2016, 33(03): 090301
Viewed
Full text


Abstract