GENERAL |
|
|
|
|
Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation |
Sheng-Li Zhang1**, Song Yang2,1 |
1Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081 2Beijing Institute of Space Mechanics & Electricity, Beijing 100076
|
|
Cite this article: |
Sheng-Li Zhang, Song Yang 2019 Chin. Phys. Lett. 36 090301 |
|
|
Abstract We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation. An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values. As an example, we apply our method to the derivation of three-mode symmetric continuous variable entangled state. Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.
|
|
Received: 09 April 2019
Published: 23 August 2019
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574400 and 11204379, the Beijing Institute of Technology Research Fund Program for Young Scholars, and the NSFC-ICTP Proposal under Grant No 11981240356. |
|
|
[1] | Braunstein S and van Loock P 2005 Rev. Mod. Phys. 77 513 | [2] | Weedbrook C, Pirandola S, García-Patrón R, Cerf N, Ralph T, Shapiro J and Lloyd S 2012 Rev. Mod. Phys. 84 621 | [3] | Eisert J, Scheel S and Plenio M 2002 Phys. Rev. Lett. 89 137903 | [4] | Fiurášek J 2002 Phys. Rev. Lett. 89 137904 | [5] | Giedke G and Cirac J 2002 Phys. Rev. A 66 032316 | [6] | Braunstein S 1998 Phys. Rev. Lett. 80 4084 | [7] | Allegra M, Giorda P and Paris M 2010 Phys. Rev. Lett. 105 100503 | [8] | Adesso G, Dell'Anno F, Siena S, Illuminati F and Souza L 2009 Phys. Rev. A 79 040305 | [9] | Dell'Anno F, De Siena S, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301 | [10] | Garcá-Patrón R, Fiuráek J, Cerf N, Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 93 130409 | [11] | Nha H and Carmichael H 2004 Phys. Rev. Lett. 93 020401 | [12] | Zhang S L and van Loock P 2011 Phys. Rev. A 84 062309 | [13] | Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324 | [14] | Zhang S L and Zhang X D 2018 Phys. Rev. A 97 043830 | [15] | Yang S, Zhang S L, Zou X B, Bi S W and Lin X L 2013 Phys. Rev. A 87 024302 | [16] | Fiurášek J 2011 Phys. Rev. A 84 012335 | [17] | Chen X 2007 Phys. Rev. A 76 022309 | [18] | Perelomov A 1986 Generalized Coherent States (Berlin: Springer Verlag) | [19] | Hoelscher-Obermaier J and van Loock P 2010 arXiv:1001.2225 | [20] | Tatham R, Mišta J, Adesso G and Korolkova N 2012 Phys. Rev. A 85 022326 | [21] | van Loock P and Braunstein S 2000 Phys. Rev. Lett. 84 3482 | [22] | van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315 | [23] | Aoki T et al 2003 Phys. Rev. Lett. 91 080404 | [24] | Vidal G and Werner R 2002 Phys. Rev. A 65 032314 | [25] | Adesso G and Illuminati F 2005 Phys. Rev. Lett. 95 150503 | [26] | Zhang S L, Guo J S, Shi J H and Zou X B 2016 Chin. Phys. Lett. 33 070303 | [27] | Adesso G, Serafini A and Illuminati F 2005 Open Syst. Inf. Dyn. 12 189 | [28] | Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|