FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Oscillation and Migration of Bubbles within Ultrasonic Field |
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai**, Bing-Bo Wei |
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai et al 2019 Chin. Phys. Lett. 36 084302 |
|
|
Abstract The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids. We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming. Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius. At the pressure antinode, the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center, whereas small bubbles escape from antinode. By contrast, at the pressure node, the bubble migration is primarily controlled by acoustic streaming, which effectively weakens the bubble adhesion on the container walls, thereby enhancing the cavitation effect in the whole liquid.
|
|
Received: 01 April 2019
Published: 22 July 2019
|
|
|
|
Fund: Supported by National Natural Science Foundation of China under Grant Nos 51327901, 51727803 and 51571164, the NPU Excellent Personnel Supporting Project, the Fundamental Research Fund of Northwestern Polytechnical University under No 3102018jcc039, and the Key Research Plan in Shanxi Province (2018GY-104). |
|
|
[1] | Wang C H, Wu Y R 2017 Chin. Phys. B 26 114303 | [2] | Chen T, Qiu Y Y, Fan T B et al 2013 Chin. Phys. Lett. 30 074302 | [3] | Yu J, Chen C Y, Chen G et al 2014 Chin. Phys. Lett. 31 034302 | [4] | Chen J C 2012 Acoustics Principle (Beijing: Science press) | [5] | Yasui K 2017 Acoustic Cavitation and Bubble Dynamics (Berlin: Springer) | [6] | Shan F, Tu J, Cheng J C et al 2017 J. Appl. Phys. 121 124502 | [7] | Fan T B, Tu J, Luo L J et al 2016 Chin. Phys. Lett. 33 084302 | [8] | Zhai W, Liu H M, Hong Z Y et al 2017 Ultrason. Sonochem. 34 130 | [9] | Lee J and Son G 2017 Numer. Heat Transfer Part A 71 928 | [10] | Guo X S, Fan P F, Tu J et al 2016 Chin. Phys. B 25 124314 | [11] | Liang J F, Chen W Z, Shao W H et al 2012 Chin. Phys. Lett. 29 074701 | [12] | Huang H, Shu D, Fu Y et al 2018 Metall. Mater. Trans. A 49 2193 | [13] | Louisnard O 2012 Ultrason. Sonochem. 19 56 | [14] | Servant G, Laborde J L, Hita A et al 2003 Ultrason. Sonochem. 10 347 | [15] | Kumaresan T, Kumar A, Pandit A B et al 2007 Ind. Eng. Chem. Res. 46 2936 | [16] | Absar S, Pasumarthi P and Choi H 2017 J. Manuf. Processes 28 515 | [17] | Kumar A, Kumaresan T, Pandit A B et al 2006 Chem. Eng. Sci. 61 7410 | [18] | Nyborg W L 1953 J. Acoust. Soc. Am. 25 68 | [19] | Nightingale K R and Trahey G E 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 201 | [20] | Wu W H, Zhai W, Hu H B et al 2017 Acta Phys. Sin. 66 194303 (in Chinese) | [21] | Xu Z, Yasuda K and Koda S 2013 Ultrason. Sonochem. 20 452 | [22] | Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628 | [23] | Finn J, Shams E and Apte S V 2011 Phys. Fluids 23 023301 | [24] | Dahlem O, Reisse J and Halloin V 1999 Chem. Eng. Sci. 54 2829 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|