Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 084302    DOI: 10.1088/0256-307X/36/8/084302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Oscillation and Migration of Bubbles within Ultrasonic Field
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai**, Bing-Bo Wei
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai et al  2019 Chin. Phys. Lett. 36 084302
Download: PDF(730KB)   PDF(mobile)(724KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids. We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming. Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius. At the pressure antinode, the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center, whereas small bubbles escape from antinode. By contrast, at the pressure node, the bubble migration is primarily controlled by acoustic streaming, which effectively weakens the bubble adhesion on the container walls, thereby enhancing the cavitation effect in the whole liquid.
Received: 01 April 2019      Published: 22 July 2019
PACS:  43.25.+y (Nonlinear acoustics)  
  47.55.dd (Bubble dynamics)  
  43.80.+p (Bioacoustics)  
Fund: Supported by National Natural Science Foundation of China under Grant Nos 51327901, 51727803 and 51571164, the NPU Excellent Personnel Supporting Project, the Fundamental Research Fund of Northwestern Polytechnical University under No 3102018jcc039, and the Key Research Plan in Shanxi Province (2018GY-104).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/084302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/084302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hua Wu
Peng-Fei Yang
Wei Zhai
Bing-Bo Wei
[1]Wang C H, Wu Y R 2017 Chin. Phys. B 26 114303
[2]Chen T, Qiu Y Y, Fan T B et al 2013 Chin. Phys. Lett. 30 074302
[3]Yu J, Chen C Y, Chen G et al 2014 Chin. Phys. Lett. 31 034302
[4]Chen J C 2012 Acoustics Principle (Beijing: Science press)
[5]Yasui K 2017 Acoustic Cavitation and Bubble Dynamics (Berlin: Springer)
[6]Shan F, Tu J, Cheng J C et al 2017 J. Appl. Phys. 121 124502
[7]Fan T B, Tu J, Luo L J et al 2016 Chin. Phys. Lett. 33 084302
[8]Zhai W, Liu H M, Hong Z Y et al 2017 Ultrason. Sonochem. 34 130
[9]Lee J and Son G 2017 Numer. Heat Transfer Part A 71 928
[10]Guo X S, Fan P F, Tu J et al 2016 Chin. Phys. B 25 124314
[11]Liang J F, Chen W Z, Shao W H et al 2012 Chin. Phys. Lett. 29 074701
[12]Huang H, Shu D, Fu Y et al 2018 Metall. Mater. Trans. A 49 2193
[13]Louisnard O 2012 Ultrason. Sonochem. 19 56
[14]Servant G, Laborde J L, Hita A et al 2003 Ultrason. Sonochem. 10 347
[15]Kumaresan T, Kumar A, Pandit A B et al 2007 Ind. Eng. Chem. Res. 46 2936
[16]Absar S, Pasumarthi P and Choi H 2017 J. Manuf. Processes 28 515
[17]Kumar A, Kumaresan T, Pandit A B et al 2006 Chem. Eng. Sci. 61 7410
[18]Nyborg W L 1953 J. Acoust. Soc. Am. 25 68
[19]Nightingale K R and Trahey G E 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 201
[20]Wu W H, Zhai W, Hu H B et al 2017 Acta Phys. Sin. 66 194303 (in Chinese)
[21]Xu Z, Yasuda K and Koda S 2013 Ultrason. Sonochem. 20 452
[22]Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[23]Finn J, Shams E and Apte S V 2011 Phys. Fluids 23 023301
[24]Dahlem O, Reisse J and Halloin V 1999 Chem. Eng. Sci. 54 2829
Related articles from Frontiers Journals
[1] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 084302
[2] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 084302
[3] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 084302
[4] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[5] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[6] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[7] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[8] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[9] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[10] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 084302
[11] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective[J]. Chin. Phys. Lett., 2016, 33(10): 084302
[12] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 084302
[13] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 084302
[14] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 084302
[15] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 084302
Viewed
Full text


Abstract