GENERAL |
|
|
|
|
Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks |
Wen-Bing Li1**, Qiang Hao2**, Yuan-Bo Du1, Shao-Qing Huang1, Peter Yun2, Ze-Huang Lu1** |
1MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 2Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600
|
|
Cite this article: |
Wen-Bing Li, Qiang Hao, Yuan-Bo Du et al 2019 Chin. Phys. Lett. 36 070601 |
|
|
Abstract We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop (PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator (OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer (DDS) which is also referenced to the 100 MHZ OCXO to generate the final 6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are $-$47 dBc/Hz, $-$77 dBc/Hz, $-$104 dBc/Hz and $-$121 dBc/Hz at 1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than $5.0 \times 10^{-14}\tau^{1/2}$ when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.
|
|
Received: 24 February 2019
Published: 20 June 2019
|
|
PACS: |
06.30.Ft
|
(Time and frequency)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
07.57.-c
|
(Infrared, submillimeter wave, microwave and radiowave instruments and equipment)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304400, and the National Natural Science Foundation of China under Grant Nos 91336213, 11703031, U1731132 and 11774108. |
|
|
[1] | Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043601 | [2] | Ashby N, Heavner T P, Jefferts S R, Parker T E, Radnaev A G and Dudin Y O 2007 Phys. Rev. Lett. 98 070802 | [3] | Fortier T M, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J and Stalnaker J E 2007 Phys. Rev. Lett. 98 070801 | [4] | Chen Z L, Bohnet J G, Weiner J M and Thompson J K 2012 Rev. Sci. Instrum. 83 044701 | [5] | Du Y B, Wei R, Dong R C, Zou F and Wang Y Z 2015 Chin. Phys. B 24 070601 | [6] | Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270 | [7] | Ramírez-Martinez F, Lours M, Rosenbusch P, Reinhard F and Reichel J 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 88 | [8] | François B, Calosso C E, Danet J M and Boudot R 2014 Rev. Sci. Instrum. 85 094709 | [9] | Boudot R, Guerandel S and De Clercq E 2009 IEEE Trans. Instrum. Meas. 58 3659 | [10] | Li W B, Du Y B, Li H and Lu Z H 2018 AIP Adv. 8 095311 | [11] | François B, Calosso C E, Abdel Hafiz M, Micalizio S and Boudot R 2015 Rev. Sci. Instrum. 86 094707 | [12] | Heavner T P, Jefferts S R, Donley E A, Parker T E and Levi F 2005 Proceedings of the 2005 IEEE Int. Freq. Control Symp. Exposition 86 308 | [13] | Camparo J C 2007 Phys. Today 60 33 | [14] | Vannicola F, Beard R, White J, Senior K, Largay M and Buisson J A 2014 Proceedings of 42nd PTTI System and Applications Meeting p 181 | [15] | Micalizio S, Levi F, Godone A, Calosso C E and Nazionale I 2015 Proceedings IFCS EFTF 1 | [16] | Bandi T, Affolderbach C, Stefanucci C, Merli F, Skrivervik A K and Mileti G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1769 | [17] | Hao Q, Li W B, He S G, Lv J F, Wang P F and Mei G H 2016 Rev. Sci. Instrum. 87 123111 | [18] | Calosso C E, Godone A, Levi F and Micalizio S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2646 | [19] | Deng J Q, Mileti G, Drullinger R E, Jennings D A and Walls F L 1999 Phys. Rev. A 59 773 | [20] | Dick G J 1987 Proc. PTTI 19 133 | [21] | Joyet A, Mileti G, Dudle G and Thomann P 2001 IEEE Trans. Instrum. Meas. 50 150 | [22] | Zhang J W, Miao K and Wang L J 2015 Chin. Phys. Lett. 32 010601 | [23] | Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wnag X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702 | [24] | Micalizio S, Calosso C E, Godone A and Levi F 2012 Metrologia 49 425 | [25] | Yan L L, Zhao W Y, Zhang Y Y, Tai Z Y, Zhang P, Rao B J, Ning K, Zhang X F, Guo W G, Zhang S G and Jiang H F 2018 Chin. Phys. B 27 030601 | [26] | Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenb, T, Lemke N, Ludlow A, Jiang Y and Oates C W 2011 Nat. Photon. 5 425 | [27] | Lipphardt B, Grosche G, Sterr U, Tamm C, Weyers S and Schnatz H 2008 IEEE Trans. Instrum. Meas. 58 1258 | [28] | Abgrall M, Guéna J, Lours M, Santarelli G, Tobar M E, Bize S, Grop S, Dubois B, Fluhr C and Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1198 | [29] | Takamizawa A, Yanagimachi S, Tanabe T, Hagimoto K, Hirano I, Watabe K, Ikegami T and Hartnett J G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1463 | [30] | Gao X, Klumperink E and Nauta B 2015 IEEE Custom Integrated Circuits Conference (CICC) | [31] | Gao X, Eric G, Kpluperink A M, Geraedts F J and Nauta B 2009 IEEE Trans. Circuits Syst. II: Express Briefs 56 117 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|