Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 066501    DOI: 10.1088/0256-307X/36/6/066501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound
Li-Yu HAO1, Tie YANG1**, Xiao-Tian WANG1, Ming TAN2**
1School of Physical Science and Technology, Southwest University, Chongqing 400715
2College of Science, Henan Agricultural University, Zhengzhou 450002
Cite this article:   
Li-Yu HAO, Tie YANG, Xiao-Tian WANG et al  2019 Chin. Phys. Lett. 36 066501
Download: PDF(568KB)   PDF(mobile)(565KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Structural, thermal expansion, and magnetic properties of the Dy$_{2}$Fe$_{16}$Cr compound are investigated by means of x-ray diffraction and magnetization measurements. The Dy$_{2}$Fe$_{16}$Cr compound has a hexagonal Th$_{2}$Ni$_{17}$-type structure. There exists a negative thermal expansion resulting from a strong spontaneous magnetostriction in the magnetic state of the Dy$_{2}$Fe$_{16}$Cr compound. The average thermal expansion coefficient is $-0.794\times 10^{-5}$/K in the temperature range 292–407 K. The spontaneous magnetostrictive deformation and the Curie temperature are discussed.
Received: 12 April 2019      Published: 18 May 2019
PACS:  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.30.Et (Exchange and superexchange interactions)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 50871074 and 61474082.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/066501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/066501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Yu HAO
Tie YANG
Xiao-Tian WANG
Ming TAN
[1]Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2]G?bara P, Cesnek M and Bednarcik J 2019 Curr. Appl. Phys. 19 188
[3]Song Y Z, Chen J, Liu X Z, Wang C W, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S T and Xing X R 2018 J. Am. Chem. Soc. 140 602
[4]Wang H P, Zhao J F, Liu W and Wei B 2018 J. Appl. Phys. 124 215107
[5]Hao Y M, Zhao M and Zhou Y 2005 J. Appl. Phys. 98 076101
[6]Hao Y M, Zhang X M, Wang B W, Yuan Y Z and Wang F 2010 J. Appl. Phys. 108 023915
[7]Hao Y M, Liang F F, Zhang X M, Wu Y Z, Qin H W and Hu J F 2011 IEEE Trans. Magn. 47 3614
[8]Hao Y M, Zhou Y and Zhao M 2005 J. Appl. Phys. 97 116102
[9]Hao Y M, Zhou Y and Zhao M 2005 Scr. Mater. 53 357
[10]Hao Y M, Tan M, Wang W and Wang F 2010 Chin. Phys. B 19 067502
[11]Hao Y M, Yan Q W, Zhang P L, Sun X D, Wang F W and Shen B G 1997 Acta Phys. Sinca (Overseas Ed.) 6 440
[12]Hao Y M, Zhang P L, Zhang J X, Sun X D, Yan Q W, Ridwan, Mujamilah, Gunawan and Marsonkohadi 1996 J. Phys. C 8 1321
[13]Hao Y M, Zhang Y Y, Jiang X Y, Gao C J and Wu Y Z 2009 Chin. Phys. Lett. 26 026501
Related articles from Frontiers Journals
[1] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 066501
[2] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. Reply to “Comment on ‘High Mixing Entropy Enhanced Energy States in Metallic Glasses’”[J]. Chin. Phys. Lett., 2022, 39(11): 066501
[3] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. High Mixing Entropy Enhanced Energy States in Metallic Glasses[J]. Chin. Phys. Lett., 2022, 39(4): 066501
[4] Tong Lu, Song Ling Liu, Yong Hao Sun, Wei-Hua Wang, and Ming-Xiang Pan. A Free-Volume Model for Thermal Expansion of Metallic Glass[J]. Chin. Phys. Lett., 2022, 39(3): 066501
[5] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 066501
[6] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 066501
[7] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 066501
[8] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center[J]. Chin. Phys. Lett., 2012, 29(6): 066501
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 066501
[10] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2010, 27(6): 066501
[11] WANG Zhi-Xin, LU Jin-Bin, YANG Wei-Tie. Formability and Thermal Stability of Ce62Al15Fe8Co15 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(2): 066501
[12] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 066501
[13] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 066501
[14] YANG Hong-Wang, TONG Wei-Ping, ZHAO Xiang, ZUO Liang, WANG Jian-Qiang. Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(9): 066501
[15] DING Ding, XIA Lei, SHAN Shao-Tai, DONG Yuan-Da. Long-Term Thermal Stability of Binary Cu50.3Zr49.7 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(1): 066501
Viewed
Full text


Abstract