Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 060301    DOI: 10.1088/0256-307X/36/6/060301
GENERAL |
Construction of Complete Orthogonal Genuine Multipartite Entanglement State
Feng-Lin Wu1,2,3, Si-Yuan Liu1,2,3**, Wen-Li Yang1,2, Heng Fan1,2,3
1Institute of Modern Physics, Northwest University, Xi'an 710127
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
3Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang et al  2019 Chin. Phys. Lett. 36 060301
Download: PDF(547KB)   PDF(mobile)(539KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the development of quantum information processing, multipartite entanglement measures are needed in many cases. However, there are still no complete orthogonal genuine multipartite entanglement (GME) bases available as Bell states to bipartite systems. To achieve this goal, we find a method to construct complete orthogonal GME states, and we exclude many equivalent states by leveraging the group theory. We also provide the case of a $3$-order $3$-dimensional Hilbert space as an example and study the application of general results in the dense coding scheme as an application. Moreover, we discuss some open questions and believe that this work will enlighten extensive studies in this field.
Received: 26 January 2019      Published: 18 May 2019
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775177, 11775178, 11647057 and 11705146, the Special Research Funds of the Department of Education of Shaanxi Province under Grant No 16JK1759, the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014, the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32, the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12, the Northwest University Scientific Research Funds under Grant No 15NW26, and the Double First-Class University Construction Project of Northwest University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/060301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng-Lin Wu
Si-Yuan Liu
Wen-Li Yang
Heng Fan
[1]Horodecki R et al 2009 Rev. Mod. Phys. 81 865
[2]Guhne O and Tóth G 2009 Phys. Rep. 474 1
[3]Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[4]Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[5]Ekert A K 1991 Phys. Rev. Lett. 67 661
[6]Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[7]Bennett C H et al 1996 Phys. Rev. A 54 3824
[8]Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[9]Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[10]Rungta P et al 2001 Phys. Rev. A 64 042315
[11]?yczkowski K et al 1998 Phys. Rev. A 58 883
[12]Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[13]Coffman V et al 2000 Phys. Rev. A 61 052306
[14]Osterloh A and Siewert J 2005 Phys. Rev. A 72 012337
[15]Fei S M et al 2009 Phys. Rev. A 80 032320
[16]Hassan A S M and Joag P S 2009 Phys. Rev. A 80 042302
[17]Chen L et al 2010 Phys. Rev. A 82 032301
[18]Akbari-Kourbolagh Y and Azhdargalam M 2019 Phys. Rev. A 99 012304
[19]Ma Z H et al 2011 Phys. Rev. A 83 062325
[20]Guo J L and Mi Y J 2014 Eur. Phys. J. D 68 39
[21]Huber M and de Vicente J I 2013 Phys. Rev. Lett. 110 030501
[22]Augusiak R et al 2018 Phys. Rev. A 98 012321
[23]Giampaolo S M and Hiesmayr B C 2015 Phys. Rev. A 92 012306
[24]Neven A et al 2018 Phys. Rev. A 98 062335
[25]Cervera-Lierta A et al 2018 J. Phys. A 51 505301
[26]Tavakoli A et al 2018 Phys. Rev. A 98 052333
[27]Che M L et al 2018 Neurocomputing 313 25
[28]Gabbrielli M et al 2018 Sci. Rep. 8 15663
[29]Miguel-Ramiro J and Dür W 2018 Phys. Rev. A 98 042309
[30]Qiang W C et al 2018 Phys. Rev. A 98 022320
[31]Liu L et al 2018 Chin. Phys. B 27 020306
[32]Yan X et al 2017 Chin. Phys. B 26 064202
[33]Fan H 2018 Acta Phys. Sin. 67 120301 (in Chinese)
[34]Ye S Q and Chen X Y 2017 Acta Phys. Sin. 66 200301 (in Chinese)
[35]Wang J C et al 2011 Acta Phys. Sin. 60 114208 (in Chinese)
[36]Chen X et al 2016 Chin. Phys. Lett. 33 010302
[37]Guo Y Q et al 2015 Chin. Phys. Lett. 32 060303
[38]Mazhar A and Huang J 2014 Chin. Phys. Lett. 31 110301
[39]Huai L P et al 2014 Chin. Phys. Lett. 31 076401
[40]Huang J H et al 2014 Chin. Phys. Lett. 31 040303
[41]Lee J et al 2002 Phys. Rev. A 66 052318
[42]Dai H Y et al 2004 Phys. Lett. A 323 360
[43]Dai H Y et al 2005 Commun. Theor. Phys. 44 40
[44]Dai H Y et al 2008 Physica A 387 3811
[45]Dai H Y et al 2008 Commun. Theor. Phys. 49 891
[46]Acín A et al 2001 Phys. Rev. Lett. 87 040401
[47]Miyake A and Verstraete F 2004 Phys. Rev. A 69 012101
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 060301
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060301
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 060301
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 060301
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 060301
[6] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 060301
[7] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 060301
[8] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 060301
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 060301
[10] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 060301
[11] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 060301
[12] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 060301
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 060301
[14] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 060301
[15] Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang. Biased Random Number Generator Based on Bell's Theorem[J]. Chin. Phys. Lett., 2016, 33(03): 060301
Viewed
Full text


Abstract