CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon |
Jian Xing1, Li-Tian Wang1, Xiao-Xin Gao1, Xue-Lian Liang1, Kai-Yong He1, Ting Xue1, Sheng-Hui Zhao1, Jin-Li Zhang1, Ming He1,2, Xin-Jie Zhao1,3, Shao-Lin Yan1, Pei Wang4, Lu Ji1,3** |
1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350 3Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350 4Beijing Institute of Radio Measurement, Beijing 100854
|
|
Cite this article: |
Jian Xing, Li-Tian Wang, Xiao-Xin Gao et al 2019 Chin. Phys. Lett. 36 057401 |
|
|
Abstract TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ (Tl-1223) films have promising applications due to their high critical temperature and strong magnetic flux pinning. Nevertheless, the preparation of pure phase Tl-1223 film is still a challenge. We successfully fabricate Tl-1223 thin films on LaAlO$_{3}$ (001) substrates using dc magnetic sputtering and a post annealing two-step method in argon atmosphere. The crystallization temperature of Tl-1223 films in argon is reduced by 100$^{\circ}\!$C compared to that in oxygen. This greatly reduces the volatilization of Tl and improves the surface morphology of films. The lower annealing temperature can effectively improve the repeatability of the Tl-1223 film preparation. In addition, pure Tl-1223 phase can be obtained in a broad temperature zone, from 790$^{\circ}\!$C to 830$^{\circ}\!$C. In our study, the films show homogenous and dense surface morphology using the presented method. The best critical temperature of Tl-1223 films is characterized to be 110 K, and the critical current $J_{\rm c}$ (77 K, 0 T) is up to $2.13\times 10^{6}$ A/cm$^{2}$.
|
|
Received: 03 January 2019
Published: 17 April 2019
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51002081, the Fundamental Research Funds for the Central Universities of China, and the Research Program of Application Foundation and Advanced Technology of Tianjin under Grant No 15JCQNJC01300. |
|
|
[1] | Kim D H, Orey K E, Kampwirth R T et al 1991 Physica C 177 431 | [2] | Vinokur V M, Kes P H and Koshelev A E 1990 Physica C 168 29 | [3] | Kim S I, Kametani F, Chen Z et al 2007 Appl. Phys. Lett. 90 252502 | [4] | Wang T, Karino H, Michitsuji K et al 2014 IEEE Trans. Appl. Supercond. 24 1 | [5] | Wu M K, Ashburn J R, Torng C J et al 1987 Phys. Rev. Lett. 58 908 | [6] | Liu R S, Zheng D N, Loram J W et al 1992 Appl. Phys. Lett. 60 1019 | [7] | Tkaczyk J E, DeLuca J A, Karas P L et al 1992 Appl. Phys. Lett. 61 610 | [8] | Juang J Y, Horng J H, Chen S P et al 1995 Appl. Phys. Lett. 66 885 | [9] | Awad R, Al-Zein A, Roumie M et al 2013 J. Mater. Sci. Technol. 29 1079 | [10] | Ren Z F, Wang C A and Wang J H 1994 Appl. Phys. Lett. 65 237 | [11] | Auinger M, Gritzner G, Bertr C et al 2007 Supercond. Sci. Technol. 20 704 | [12] | Heiml O and Gritzner G 2002 Supercond. Sci. Technol. 15 956 | [13] | Gao X X, Xie W, Wang Z et al 2014 J. Supercond. Novel Magn. 27 1665 | [14] | Cubicciotti D and Keneshea F J 1967 J. Phys. Chem. 71 808 | [15] | Ahn B T, Lee W Y and Beyers R 1992 Appl. Phys. Lett. 60 2150 | [16] | Yan S L, Fang L, Song Q X et al 1993 Appl. Phys. Lett. 63 1845 | [17] | Aselage T L, Venturini E L and van Deusen S B 1994 J. Appl. Phys. 75 1023 | [18] | Aselage T L, Voigt J A and Keefer K D 1990 J. Am. Cerom. Soc. 73 3345 | [19] | Aselage T L, Venturini E L, van Deusen S B et al 1992 Physica C 203 25 | [20] | Aselage T L, Venturini E L, Voigt J A et al 1996 J. Mater. Res. 11 1635 | [21] | Doss J D, Cooke D W, Mccabe C W et al 1988 Rev. Sci. Instrum. 59 659 | [22] | Li Y J, Xiong G C, Gan Z Z et al 1993 Acta Phys. Sin. (Overseas Edn) 2 211 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|