Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 057401    DOI: 10.1088/0256-307X/36/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon
Jian Xing1, Li-Tian Wang1, Xiao-Xin Gao1, Xue-Lian Liang1, Kai-Yong He1, Ting Xue1, Sheng-Hui Zhao1, Jin-Li Zhang1, Ming He1,2, Xin-Jie Zhao1,3, Shao-Lin Yan1, Pei Wang4, Lu Ji1,3**
1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350
2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350
3Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350
4Beijing Institute of Radio Measurement, Beijing 100854
Cite this article:   
Jian Xing, Li-Tian Wang, Xiao-Xin Gao et al  2019 Chin. Phys. Lett. 36 057401
Download: PDF(945KB)   PDF(mobile)(942KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ (Tl-1223) films have promising applications due to their high critical temperature and strong magnetic flux pinning. Nevertheless, the preparation of pure phase Tl-1223 film is still a challenge. We successfully fabricate Tl-1223 thin films on LaAlO$_{3}$ (001) substrates using dc magnetic sputtering and a post annealing two-step method in argon atmosphere. The crystallization temperature of Tl-1223 films in argon is reduced by 100$^{\circ}\!$C compared to that in oxygen. This greatly reduces the volatilization of Tl and improves the surface morphology of films. The lower annealing temperature can effectively improve the repeatability of the Tl-1223 film preparation. In addition, pure Tl-1223 phase can be obtained in a broad temperature zone, from 790$^{\circ}\!$C to 830$^{\circ}\!$C. In our study, the films show homogenous and dense surface morphology using the presented method. The best critical temperature of Tl-1223 films is characterized to be 110 K, and the critical current $J_{\rm c}$ (77 K, 0 T) is up to $2.13\times 10^{6}$ A/cm$^{2}$.
Received: 03 January 2019      Published: 17 April 2019
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51002081, the Fundamental Research Funds for the Central Universities of China, and the Research Program of Application Foundation and Advanced Technology of Tianjin under Grant No 15JCQNJC01300.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Xing
Li-Tian Wang
Xiao-Xin Gao
Xue-Lian Liang
Kai-Yong He
Ting Xue
Sheng-Hui Zhao
Jin-Li Zhang
Ming He
Xin-Jie Zhao
Shao-Lin Yan
Pei Wang
Lu Ji
[1]Kim D H, Orey K E, Kampwirth R T et al 1991 Physica C 177 431
[2]Vinokur V M, Kes P H and Koshelev A E 1990 Physica C 168 29
[3]Kim S I, Kametani F, Chen Z et al 2007 Appl. Phys. Lett. 90 252502
[4]Wang T, Karino H, Michitsuji K et al 2014 IEEE Trans. Appl. Supercond. 24 1
[5]Wu M K, Ashburn J R, Torng C J et al 1987 Phys. Rev. Lett. 58 908
[6]Liu R S, Zheng D N, Loram J W et al 1992 Appl. Phys. Lett. 60 1019
[7]Tkaczyk J E, DeLuca J A, Karas P L et al 1992 Appl. Phys. Lett. 61 610
[8]Juang J Y, Horng J H, Chen S P et al 1995 Appl. Phys. Lett. 66 885
[9]Awad R, Al-Zein A, Roumie M et al 2013 J. Mater. Sci. Technol. 29 1079
[10]Ren Z F, Wang C A and Wang J H 1994 Appl. Phys. Lett. 65 237
[11]Auinger M, Gritzner G, Bertr C et al 2007 Supercond. Sci. Technol. 20 704
[12]Heiml O and Gritzner G 2002 Supercond. Sci. Technol. 15 956
[13]Gao X X, Xie W, Wang Z et al 2014 J. Supercond. Novel Magn. 27 1665
[14]Cubicciotti D and Keneshea F J 1967 J. Phys. Chem. 71 808
[15]Ahn B T, Lee W Y and Beyers R 1992 Appl. Phys. Lett. 60 2150
[16]Yan S L, Fang L, Song Q X et al 1993 Appl. Phys. Lett. 63 1845
[17]Aselage T L, Venturini E L and van Deusen S B 1994 J. Appl. Phys. 75 1023
[18]Aselage T L, Voigt J A and Keefer K D 1990 J. Am. Cerom. Soc. 73 3345
[19]Aselage T L, Venturini E L, van Deusen S B et al 1992 Physica C 203 25
[20]Aselage T L, Venturini E L, Voigt J A et al 1996 J. Mater. Res. 11 1635
[21]Doss J D, Cooke D W, Mccabe C W et al 1988 Rev. Sci. Instrum. 59 659
[22]Li Y J, Xiong G C, Gan Z Z et al 1993 Acta Phys. Sin. (Overseas Edn) 2 211
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 057401
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 057401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 057401
[4] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 057401
[5] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 057401
[6] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 057401
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057401
[8] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 057401
[9] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 057401
[10] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 057401
[11] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 057401
[12] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 057401
[13] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 057401
[14] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 057401
[15] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 057401
Viewed
Full text


Abstract