Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 050302    DOI: 10.1088/0256-307X/36/5/050302
GENERAL |
Complementarity via Minimum Error Measurement in a Two-Path Interferometer
Junzhao Liu, Yanjun Liu, Jing Lu**
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications, Hunan Normal University, Changsha 410081
Cite this article:   
Junzhao Liu, Yanjun Liu, Jing Lu 2019 Chin. Phys. Lett. 36 050302
Download: PDF(868KB)   PDF(mobile)(864KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the fringe visibility and the which-path information (WPI) of a general Mach–Zehnder interferometer with an asymmetric beam splitter (BS). A minimum error measurement in the detector is used to extract the WPI. Both the fringe visibility $V$ and the WPI $I_{\rm path}$ are affected by the initial state of the photon and the second asymmetric BS. The condition in which the WPI takes the maximum is obtained. The complementarity relationship $V^{2}+I_{\rm path}^{2}\leq 1$ is found, and the conditions for equality are also presented.
Received: 25 December 2018      Published: 17 April 2019
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  07.60.Ly (Interferometers)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11434011 and 11575058.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/050302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junzhao Liu
Yanjun Liu
Jing Lu
[1]Bohr N 1928 Nature 121 413
[2]Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[3]Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[4]Englert B G 1996 Phys. Rev. Lett. 77 2154
[5]Mandel L 1991 Opt. Lett. 16 1882
[6]Jaeger G, Horne M A and Shimony A 1993 Phys. Rev. A 48 1023
[7]Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[8]Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
[9]Dürr S 2001 Phys. Rev. A 64 042113
[10]Zawisky M, Baron M and Loidl R 2002 Phys. Rev. A 66 063608
[11]Kaszlikowski D, Kwek L C, Zukowski M and Englert B 2003 Phys. Rev. Lett. 91 037901
[12]Bimonte G and Musto R 2003 Phys. Rev. A 67 066101
[13]Bramon A, Garbarino G and Hiesmayr B C 2004 Phys. Rev. A 69 022112
[14]Jakob M and Bergou J 2007 Phys. Rev. A 76 052107
[15]Ban M J 2008 J. Mod. Opt. 55 3625
[16]Ban M, Shibataa F and Kitajimaa S 2009 J. Mod. Opt. 56 89
[17]Han Y, Wu C W, Wu W, Chen P X and Li C Z 2009 Chin. Phys. Lett. 26 040303
[18]Fonseca-Romero K M, Oliveira J G G D, Faria J G P D and Nemes M C 2014 Phys. Rev. A 90 062102
[19]Siddiqui M A and Qureshi T 2015 Prog. Theor. Exp. Phys. p 083A02
[20]Angelo R M and Ribeiro A D 2015 Found. Phys. 45 1407
[21]Jia A A, Huang J H, FengW, Zhang T C and Zhu S Y 2014 Chin. Phys. B 23 030307
[22]Jacques V, Wu E, Grosshans F, Treussart F et al 2008 Phys. Rev. Lett. 100 220402
[23]Li L, Liu N L and Yu S X 2012 Phys. Rev. A 85 054101
[24]Liu Y J, Lu J and Zhou L 2017 Laser Phys. Lett. 14 055204
[25]Liu Y J, Lu J, Peng Z H, Zhou L and Zheng D N 2019 Chin. Phys. B 28 030303
[26]Cover T M and Thomas J A 1991 Elements of Information Theory (New York: Wiley)
[27]Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[28]Chefles A 2000 Contemp. Phys. 41 401
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 050302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 050302
Viewed
Full text


Abstract