Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 050303    DOI: 10.1088/0256-307X/36/5/050303
GENERAL |
Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise
Bing-Bing Chai, Jin-Liang Guo**
College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387
Cite this article:   
Bing-Bing Chai, Jin-Liang Guo 2019 Chin. Phys. Lett. 36 050303
Download: PDF(1878KB)   PDF(mobile)(1871KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the influences of collective dephasing, multilocal qutrit-flip, local qutrit-flip, and the combination of global mixed noise, we study the dynamics of entanglement and the phenomenon of distillability of sudden death (DSD) in a qutrit-qutrit system under various decoherent noises. It is shown that the system always undergoes DSD when it interacts with multilocal and local qutrit-flip noise, and the time-determined bound entangled state is more dependent on different noises. Comparing with the cases of global mixed and collective dephasing noise, we conclude that the qutrit-flip noise is responsible for the DSD.
Received: 19 December 2018      Published: 17 April 2019
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
Fund: Supported by the Natural Science Foundation of China under Grant Nos 11305114, 11304226 and 11505126, and the Program for Innovative Research in University of Tianjin under Grant No TD13-5077.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/050303       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/050303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-Bing Chai
Jin-Liang Guo
[1]Bennett C H and Sicincenzo D P 2000 Nature 404 247
[2]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3]Nielsen M A, Chuang I L Quantum Computation, Quantum Information (Cambridge University Press and Cambridge 2000)
[4]Breuer H P, Petruccione F The Theory of Open Quantum Systems (Oxford University Press and Oxford 2002)
[5]Zurek W H 2003 Rev. Mod. Phys. 75 715
[6]Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[7]Yönaç M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[8]Yönaç M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
[9]Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[10]Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
[11]Liu R F and Chen C C 2006 Phys. Rev. A 74 024102
[12]Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[13]Ann K and Jaeger G 2007 Phys. Rev. A 76 044101
[14]Karpat G and Gedik Z 2011 Phys. Lett. A 375 4166
[15]Guo J L, Li H and Long G L 2013 Quantum Inf. Process. 12 3421
[16]Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[17]Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[18]Song W, Chen L and Zhu S L 2009 Phys. Rev. A 80 012331
[19]Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
[20]Baghbanzadeh S, Alipour S and Rezakhani A T 2010 Phys. Rev. A 81 042302
[21]Baghbanzadeh S and Rezakhani A T 2013 Phys. Rev. A 88 062320
[22]Shor P W, Smolin J A and Thapliyal A V 2003 Phys. Rev. Lett. 90 107901
[23]Ali M 2010 Phys. Rev. A 81 042303
[24]Ali M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045504
[25]Khan S and Khan M K 2011 J. Mod. Opt. 58 918
[26]Huang J, Fang M F, Yang B Y and Liu X 2012 Chin. Phys. B 21 084205
[27]Ali M 2014 Chin. Phys. B 23 090306
[28]Guo Y N, Fang M F, Zhang S Y and Liu X 2014 Europhys. Lett. 108 47002
[29]Guo Y N, Fang M F, Zou H M, Zhang S Y and Liu X 2015 Quantum Inf. Process. 14 2067
[30]Sun Z, Wang X G, Gao Y B and Sun C P 2008 Eur. Phys. J. D 46 521
[31]Cheng W, Xu F, Li H and Wang G 2013 Int. J. Theor. Phys. 52 1061
[32]Wang Y, Cheng C C and Guo J L 2018 Sci. Chin.-Phys. Mech. Astron. 61 020312
[33]Wootters W K 1998 Phys. Rev. Lett. 80 2245
[34]Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[35]Peres A 1996 Phys. Rev. Lett. 77 1413
[36]Chen K and Wu L A 2003 Quantum Inf. Comput. 3 193
[37]Wei H R, Ren B C, Li T, Hua M and Deng F G 2012 Commun. Theor. Phys. 57 983
[38]Horodecki P, Horodecki M and Horodecki R 1999 Phys. Rev. Lett. 82 1056
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050303
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 050303
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 050303
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 050303
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 050303
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 050303
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 050303
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 050303
[9] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 050303
[10] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 050303
[11] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 050303
[12] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 050303
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 050303
[14] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 050303
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 050303
Viewed
Full text


Abstract