CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Post-Annealing on Structural and Electrical Properties of ZnO:In Films |
Guo-Ping Qin1**, Hong Zhang2, Hai-Bo Ruan3, Jiang Wang1, Dong Wang1, Chun-Yang Kong1 |
1College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 2College of Physics, Chongqing University, Chongqing 401331 3Research Center for Materials Interdisciplinary Sciences, Chongqing University of Arts and Sciences, Chongqing 402160
|
|
Cite this article: |
Guo-Ping Qin, Hong Zhang, Hai-Bo Ruan et al 2019 Chin. Phys. Lett. 36 047301 |
|
|
Abstract Indium-doped ZnO (ZnO:In) films are deposited on quartz substrates by rf magnetron sputtering. The effects of post-annealing on structural, electrical, optical and Raman properties are investigated by x-ray diffraction, Raman scattering, Hall measurement and first-principles calculation. The results indicate that all of the ZnO:In films have excellent crystallinity with a preferred ZnO (002) orientation. It is found that the incorporation of In can dramatically increase the intensity of the 274 cm$^{-1}$ Raman mode. However, both post-annealing treatment and increasing O$_{2}$ partial pressure in the process of preparing thin films can reduce the intensity of the 274 cm$^{-1}$ mode or even eliminate it, and relax compressive stress of the ZnO:In film judged by analyzing the shifts of the (002) Bragg peaks and $E_{2}$ (high) mode. Finally, the origin of the 274 cm$^{-1}$ mode is inferred to be the vibration of Zn interstitial (Zn$_{\rm i}$) defects, which play a crucial role in the high electron concentration and low resistivity of ZnO:In films annealed in an appropriate temperature range (450–600$^{\circ}\!$C).
|
|
Received: 02 December 2018
Published: 23 March 2019
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51472038 and 51502030, the Natural Science Foundation of Chongqing City under Grant Nos CSTC2016jcyjA and 2018jcyjA2923, the Education Commission of Chongqing under Grant Nos KJ1500319, 1501112 and KJ1600314, and the PhD Scientific Research Fund under Grant No 16XlB002. |
|
|
[1] | Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B and Nordlund K 2005 Phys. Rev. Lett. 95 225502 | [2] | Yu X X, Zheng H M, Fang X Y Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301 | [3] | Dixon S C, Sathasivam S, Williamson B A D, Scanlon D O, Carmalt C J and Parkin I P 2017 J. Mater. Chem. C 5 7585 | [4] | Rahman M A, Scott J A, Gentle A, Phillips M R and Ton-That C 2018 Nanotechnology 29 425707 | [5] | Kraya R, Baskar J, Arceo A, Kraya R, Baskar J, Arceo A, Katz H E and Thakor N 2018 Thin Solid Films 664 41 | [6] | Maller R, Porte Y, Alshareef H N Alshareef H N and McLachlan M A 2016 J. Mater. Chem. C 4 5953 | [7] | Potter D B, Bhachu D S, Powell M J, Darr J A, Parkin I P and Carmalt C J 2016 Phys. Status Solidi A 213 1346 | [8] | Perumal R, Hassan Z and Saravanan R 2016 Chin. Phys. Lett. 33 066101 | [9] | He H, Su B, Duan H and Ye Z 2018 J. Appl. Phys. 123 085702 | [10] | Fortunato E M C, Barquinha P M C, Pimentel A, Goncalves A M F, Marques A J S, Pereira L M N and Martins R F P 2005 Adv. Mater. 17 590 | [11] | Kang H S, Kang J S, Kim J W and Lee S Y 2004 J. Appl. Phys. 95 1246 | [12] | Ke Z, Yang Z, Wang M, Cao M, Sun Z and Shao J 2017 Sens. Actuators A 253 173 | [13] | Wang Y H, Ma Q, Zheng L L, Liu W J, Ding S J, Lu H L and Zhang W 2016 Chin. Phys. Lett. 33 058501 | [14] | Li Q, Liu X, Gu M, Huang S and Wu Q 2017 Mater. Res. Bull. 86 173 | [15] | Ge Y, Wei Z, Li Y, Qu J, Zu B and Dou X 2017 Sens. Actuators B 244 983 | [16] | Labégorre J B, Lebedev O I, Bourgès C, Rečnik A, Košir M, Bernik S, Maignan A, Mercier T L, Pautrot-d'Alençon L and Guilmeau E 2018 ACS Appl. Mater. Interfaces 10 6415 | [17] | Zhang P, Kong C, Li W, Li W, Qin G, Xu Q, Zhang H, Ruan H, Cu Y and Fang L 2015 Appl. Surf. Sci. 327 154 | [18] | Mohanty B C, Yeon D H, Kim B K and Cho Y S 2011 J. Electrochem. Soc. 158 P30 | [19] | Bashar S B, Suja M, Morshed M, Gao S F and Liu J 2016 Nanotechnology 27 065204 | [20] | Kong C Y, Qin G P, Ruan H B, Nan M, Zhu R J and Dai T L 2008 Chin. Phys. Lett. 25 1128 | [21] | Anastassakis E, Pinczuk A, Burstein E, Pollak F H and Cardona M 1970 Solid State Commun. 8 133 | [22] | Li W, Fang L, Qin G, Ruan H, Zhang H, Kong C, Ye L, Zhang P and Wu F 2015 J. Appl. Phys. 117 145301 | [23] | Wu K, Fang Q, Wang W, Thomas M A and Cui J 2012 J. Appl. Phys. 111 063530 | [24] | Sun Y, Seo J H, Takacs C J, Seifter J and Heeger A J 2011 Adv. Mater. 23 1679 | [25] | Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K P, Bjorgen M and Zecchina A 2004 Chem. Commun. 20 2300 | [26] | Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, offmann A and Thomsen C 2002 Appl. Phys. Lett. 80 1909 | [27] | Friedrich F and Nickel N H 2007 Appl. Phys. Lett. 91 111903 | [28] | Jindal K, Tomar M, Katiyar R S and Gupta V 2016 J. Appl. Phys. 120 135305 | [29] | Gluba M A, Nickel N H and Karpensky N 2013 Phys. Rev. B 88 245201 | [30] | Kamada Y, Furuta M, Hiramatsu T, Kawaharamura T, Wang D and Shimakawa S 2011 J. Appl. Surf. Sci. 258 695 | [31] | Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 | [32] | Erhart P and Albe K 2006 Appl. Phys. Lett. 88 201918 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|