Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 047401    DOI: 10.1088/0256-307X/36/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The 0–$\pi$ Phase Transition in Epitaxial NbN/Ni$_{60}$Cu$_{40}$/NbN Josephson Junctions
Feng Li1,2,3, Wei Peng1,2, Zhen Wang1,2,3,4**
1Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2CAS Center for Excellence in Superconducting Electronics, Shanghai 200050
3University of Chinese Academy of Sciences, Beijing 100049
4School of Physical Science and Technology, University of ShanghaiTech, Shanghai 200031
Cite this article:   
Feng Li, Wei Peng, Zhen Wang 2019 Chin. Phys. Lett. 36 047401
Download: PDF(858KB)   PDF(mobile)(847KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate high quality superconductor/ferromagnet/superconductor (SFS) Josephson junctions using epitaxial NbN/Ni$_{60}$Cu$_{40}$/NbN trilayer heterostructures. Both experimental measurements and theoretical calculations of the ferromagnet layer thickness dependence of the Josephson critical current are performed. We observe the damped oscillation behavior of the critical current as a function of the ferromagnetic layer thickness at 4.2 K, which shows a 0–$\pi$ phase transition in this type of magnetic Josephson junction. Clear 0–$\pi$ and reverse $\pi$–0 phase transitions occur around the Ni$_{60}$Cu$_{40}$ thicknesses of 3.2 and 6.7 nm. Numerical calculations based on the quasi-classical Usadel equation and the Green function fit well with the experimental results. Compared with the dirty limit, the intermediate regime without the dead layer gives better fit for our SFS Josephson junctions because of the epitaxial structure. Both of the 0- and $\pi$-phase junctions show the ideal magnetic field dependence with a Fraunhofer-like pattern at 4.2 K.
Received: 14 December 2018      Published: 23 March 2019
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
Fund: Supported by the Strategic Priority Research Program (A) of Chinese Academy of Sciences under Grant No XDA18000000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/047401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/047401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng Li
Wei Peng
Zhen Wang
[1]Geshkenbein V B and Larkin A I 1986 JETP Lett. 43 395
[2]Liu J F, Zhang H and Wang J 2016 Chin. Phys. B 25 097403
[3]Sigrist M and Rice T M 1992 J. Phys. Soc. Jpn. 61 4283
[4]Hilgenkamp H, Mannhart J and Mayer B 1996 Phys. Rev. B 53 14586
[5]Smilde H J H, Ariando, Blank D H A, Gerritsma G J, Hilgenkamp H and Rogalla H 2002 Phys. Rev. Lett. 88 057004
[6]Baselmans J J A, Morpurgo A F, van Wees B J and Klapwijk T M 1999 Nature 397 43
[7]Bulaevskii L N, Kuzii V V and Sobyanin A A 1977 JETP Lett. 25 290
[8]Peng L, Liu Y S, Cai C B and Zhang J C 2011 Chin. Phys. Lett. 28 087401
[9]Ryazanov V V, Oboznov V A, Rusanov A Y, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
[10]Oboznov V A, Bol'ginov V V, Feofanov A K, Ryazanov V V and Buzdin A I 2006 Phys. Rev. Lett. 96 197003
[11]Yamashita T, Kawakami A and Terai H 2017 Phys. Rev. Appl. 8 054028
[12]Weides M, Kemmler M, Kohlstedt H, Waser R, Koelle D, Kleiner R and Goldobin E 2006 Phys. Rev. Lett. 97 247001
[13]Pepe G P, Latempa R, Parlato L, Ruotolo A, Ausanio G, Peluso G, Barone A, Golubov A A, Fominov Y V and Kupriyanov M Y 2006 Phys. Rev. B 73 054506
[14]Fominov Y V, Chtchelkatchev N M and Golubov A A 2002 Phys. Rev. B 66 014507
[15]Ustinov A V and Kaplunenko V K 2003 J. Appl. Phys. 94 5405
[16]Ioffe L B, Geshkenbein V B, Feigel'man M V, Fauchere A L and Blatter G 1999 Nature 398 679
[17]Yamashita T, Tanikawa K, Takahashi S and Maekawa S 2005 Phys. Rev. Lett. 95 097001
[18]Blatter G, Geshkenbein V B and Ioffe L B 2001 Phys. Rev. B 63 174511
[19]Ryazanov V V, Bol'ginov V V, Sobanin D S, Vernik I V, Tolpygo S K, Kadin A M and Mukhanov O A 2012 Phys. Procedia 36 35
[20]Li F, Zhang H, Zhang L, Peng W and Wang Z 2018 AIP Adv. 8 055007
[21]Khaire T S, Pratt W P and Birge N O 2009 Phys. Rev. B 79 094523
[22]Usadel K D 1970 Phys. Rev. Lett. 25 507
[23]Buzdin A I, Vujicic B and Kupriyanov M Y 1992 Zh. Eksp. Teor. Fiz. 101 231
[24]Weides M, Kemmler M, Goldobin E, Koelle D, Kleiner R, Kohlstedt H and Buzdin A 2006 Appl. Phys. Lett. 89 122511
[25]Petrovykh D Y, Altmann K N, Hochst H, Laubscher M, Maat S, Mankey G J and Himpsel F J 1998 Appl. Phys. Lett. 73 3459
[26]Aarts J, Geers J M E, Bruck E, Golubov A A and Coehoorn R 1997 Phys. Rev. B 56 2779
[27]Faure M, Buzdin A I, Golubov A A and Kupriyanov M Y 2006 Phys. Rev. B 73 064505
[28]Bergeret F S, Volkov A F and Efetov K B 2001 Phys. Rev. B 64 134506
[29]Robinson J W A, Piano S, Burnell G, Bell C and Blamire M G 2006 Phys. Rev. Lett. 97 177003
[30]Bell C, Loloee R, Burnell G and Blamire M G 2005 Phys. Rev. B 71 180501
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 047401
[2] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 047401
[3] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 047401
[4] Shaohua Wang, Qiangwei Yin, Hechang Lei. Physical Properties of [$A_{6}$Cl][Fe$_{24}$Se$_{26}$]($A$=K, Rb) with Self-Similar Structure[J]. Chin. Phys. Lett., 2020, 37(1): 047401
[5] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 047401
[6] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 047401
[7] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 047401
[8] Jing-Hui Li. Enhancement of Resonant Activation by Constant Bias Current for Superconducting Junction[J]. Chin. Phys. Lett., 2016, 33(11): 047401
[9] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 047401
[10] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 047401
[11] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 047401
[12] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 047401
[13] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 047401
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 047401
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 047401
Viewed
Full text


Abstract