CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Double Resonance Raman Scattering in Single-Layer MoSe$_{2}$ under Moderate Pressure |
Jian-mei Li1,2, Yi-kun Yao1,2, Li-huan Sun1,2, Xin-yan Shan1, Cong Wang5, Xing-hua Lu1,2,3,4** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 3Center for Excellence in Topological Quantum Computation, Beijing 100190 4Songshan Lake Materials Laboratory, Dongguan 523808 5School of Physics & Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
|
|
Cite this article: |
Jian-mei Li, Yi-kun Yao, Li-huan Sun et al 2019 Chin. Phys. Lett. 36 048201 |
|
|
Abstract Pressure-dependent properties in layered transition-dichalcogenides are important for our understanding of their basic structures and applications. We investigate the electronic structure in MoSe$_{2}$ monolayer under external pressure up to 5.73 GPa by Raman spectroscopy and photoluminescence (PL) spectroscopy. The double resonance out-of-plane acoustic mode ($2ZA$) phonon is observed in Raman spectroscopy near 250 cm$^{-1}$, which presents pronounced intensity and pressure dependence. Significant variation in $2ZA$ peak intensity under different pressures reflects the change in electronic band structure as pressure varies, which is consistent with the blue shift in PL spectroscopy. The high sensitivity in both Raman and PL spectroscopy under moderate pressure in such a two-dimensional material may have many advantages for optoelectronic applications.
|
|
Received: 04 December 2018
Published: 23 March 2019
|
|
PACS: |
82.80.Gk
|
(Analytical methods involving vibrational spectroscopy)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
|
Fund: Supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB30000000, XDB28000000 and XDB07030100, the National Natural Science Foundation of China under Grant Nos 11774395, 11727902 and 91753136, and the Beijing Natural Science Foundation under Grant No 4181003. |
|
|
[1] | Splendiani A et al 2010 Nano Lett. 10 1271 | [2] | Mak K F et al 2010 Phys. Rev. Lett. 105 136805 | [3] | Zhou Y et al 2017 Nat. Nanotechnol. 12 856 | [4] | Xu X et al 2014 Nat. Phys. 10 343 | [5] | Plechinger G et al 2016 Nat. Commun. 7 12715 | [6] | Cui X et al 2015 Nat. Nanotechnol. 10 534 | [7] | Li X X et al 2017 Nat. Commun. 8 970 | [8] | Claassen M et al 2016 Nat. Commun. 7 13074 | [9] | Mak K F and Shan J 2016 Nat. Photon. 10 216 | [10] | Soubelet P et al 2016 Phys. Rev. B 93 155407 | [11] | Lee J U et al 2017 Nat. Commun. 8 1370 | [12] | Wang Y et al 2017 Nature 550 487 | [13] | Zhao Z et al 2015 Nat. Commun. 6 7312 | [14] | Nayak A P et al 2015 Nano Lett. 15 346 | [15] | Chi Z H et al 2014 Phys. Rev. Lett. 113 036802 | [16] | Hromadová L et al 2013 Phys. Rev. B 87 144105 | [17] | Nayak A P et al 2014 Nat. Commun. 5 3731 | [18] | Kohulák O and Martoňák R 2017 Phys. Rev. B 95 054105 | [19] | Rifliková M et al 2014 Phys. Rev. B 90 035108 | [20] | Dybala F et al 2016 Sci. Rep. 6 26663 | [21] | Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695 | [22] | Zhang X et al 2015 Chem. Soc. Rev. 44 2757 | [23] | Puretzky A A et al 2015 ACS Nano 9 6333 | [24] | Cong C et al 2011 ACS Nano 5 8760 | [25] | Zhang X et al 2016 Carbon 99 118 | [26] | Zhang X et al 2016 Nanoscale 8 6435 | [27] | Gao R and Li H 2012 High Press. Res. 32 176 | [28] | Yang M et al 2017 Appl. Phys. Lett. 110 093108 | [29] | Roy A, Movva H C, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E and Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396 | [30] | Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C and Loh K P 2017 J. Am. Chem. Soc. 139 1073 | [31] | Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K and Ajayan P M 2014 ACS Nano 8 5125 | [32] | Chang Y H, Zhang W, Yihan Zhu, Yu Han, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T, Li H, Wu C I, Chang W H, Wee A T S and Li L J 2014 ACS Nano 8 8582 | [33] | Lu X, Utama M I, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z, Zhou W and Xiong Q 2014 Nano Lett. 14 2419 | [34] | Zhao Y, Lee H, Choi W, Fei W and Lee C J 2017 RSC Adv. 7 27969 | [35] | Nam D, Lee J U and Cheong H 2015 Sci. Rep. 5 17113 | [36] | Bilgin I, Raeliarijaona A S, Lucking M C, Hodge S C, Mohite A D, de Luna Bugallo A, Terrones H and Kar S 2018 ACS Nano 12 740 | [37] | Postorino P, Congeduti A, Degiorgi E, Itié J P and Munsch P 2002 Phys. Rev. B 65 224102 | [38] | Caramazza S, Capitani F, Marini C, Mancini A, Malavasi L, Dore P and Postorino P 2017 J. Phys.: Conf. Ser. 950 042012 | [39] | Fu X, Li F, Lin J F, Gong Y, Huang X, Huang Y, Han B, Zhou Q and Cui T 2017 J. Phys. Chem. Lett. 8 3556 | [40] | Chang C H, Fan X, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420 | [41] | Xiuming Dou, Kun Ding, Desheng Jiang and Sun B 2014 ACS Nano 8 7458 | [42] | Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W and Zou B 2017 J. Am. Chem. Soc. 139 10087 | [43] | Venezuela P, Lazzeri M and Mauri F 2011 Phys. Rev. B 84 035433 | [44] | Thomsen C and Reich S 2000 Phys. Rev. Lett. 85 5214 | [45] | Martin R M and Falicov L M 1983 Top. Appl. Phys. 8 79 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|