GENERAL |
|
|
|
|
An Atomic Magnetometer with Spin-Projection Noise Proportional to $\sqrt{{T_2}}$ |
Hai-Feng Dong1,2**, Xiao-Fei Wang1, Ji-Min Li1, Jing-Ling Chen1, Yuan Ren3 |
1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083 2Graduate School of China Academy of Engineering Physics, Beijing 100193 3Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416
|
|
Cite this article: |
Hai-Feng Dong, Xiao-Fei Wang, Ji-Min Li et al 2019 Chin. Phys. Lett. 36 020701 |
|
|
Abstract There is a common sense view for atomic magnetometers that their spin-projection-noises (SPNs) are inversely proportional to $\sqrt{{T_2}}$, where $T_2$ is the transverse relaxation time. We analyze the current atomic magnetometer types and give a counter-example of this common sense, which is the all-optical spin precession modulated three-axis atomic magnetometer proposed by our group in 2015. Unlike the other atomic magnetometers, the SPN of this kind of atomic magnetometers is proportional to $\sqrt{{T_2}}$ due to the fact that the scale factor between $P_x$ and $B$ can be unrelated to the transverse relaxation time $T_2$. We demonstrate this irrelevance experimentally and analyze the SPN theoretically. Using short-pulse ultra-high power laser to fully polarize the atoms, the phenomenon that SPN decreases with $T_2$ may also be demonstrated experimentally and a new tool for researching SPN in atomic magnetometers may be realized.
|
|
Received: 12 September 2018
Published: 22 January 2019
|
|
PACS: |
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
32.30.Dx
|
(Magnetic resonance spectra)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51675034 and 61273067, and the Natural Science Foundation of Beijing Municipality under Grant No 7172123. |
|
|
[1] | Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 253002 | [2] | Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801 | [3] | Ledbetter M P et al 2008 Phys. Rev. A 77 033408 | [4] | Savukov I M, Seltzer S J, Romalis M V and Sauer K L 2005 Phys. Rev. Lett. 95 063004 | [5] | Deans C, Marmugi L and Renzoni F 2017 Opt. Express 25 17911 | [6] | Lee S K et al 2006 Appl. Phys. Lett. 89 214106 | [7] | Shah V, Knappe S, Schwindt P D D and Kitching J 2007 Nat. Photon. 1 649 | [8] | Johnson C, Schwindt P D D and Weisend M 2010 Appl. Phys. Lett. 97 243703 | [9] | Dong H F et al 2012 Eur. Phys. J. Appl. Phys. 57 21004 | [10] | Li R J et al 2017 Chin. Phys. B 26 120702 | [11] | Smullin S J et al 2009 Phys. Rev. A 80 033420 | [12] | Schultze V et al 2017 Sensors 17 561 | [13] | Bell W E and Bloom A L 1957 Phys. Rev. 107 1559 | [14] | Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701 | [15] | Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503 | [16] | Alldredge L R 1960 J. Geophys. Res. 65 3777 | [17] | Alldredge L R and Ignas S 1964 J. Geophys. Res. 69 1963 | [18] | Alexandrov E B et al 2004 Meas. Sci. Technol. 15 918 | [19] | Vershovskii A K 2006 Opt. Spectrosc. 101 309 | [20] | Patton B, Zhivun E, Hovde D C and Budker D 2014 Phys. Rev. Lett. 113 013001 | [21] | Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804 | [22] | Gravrand O, Khokhlov A, Mouel J L L and Leger J M 2001 Earth Planets Space 53 949 | [23] | Huang H C, Dong H F, Chen L and Gao Y 2016 Appl. Phys. Lett. 109 062404 | [24] | Fairweather A J and Usher M J 1972 J. Phys. E 5 986 | [25] | Huang H C et al 2015 Appl. Phys. Lett. 107 182403 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|