CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
$^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ |
Yu-Ting Shao1,2, Wen-Shan Hong1,2, Shi-Liang Li1,2,3, Zheng Li1,2**, Jian-Lin Luo1,2,3** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 3Songshan Lake Materials Laboratory, Dongguan 523808
|
|
Cite this article: |
Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li et al 2019 Chin. Phys. Lett. 36 127401 |
|
|
Abstract We report a $^{19}\!$F nuclear magnetic resonance (NMR) study on single-crystal KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ ($T_{\rm c} \sim 33.3$ K). The $^{19}$F NMR spectral shape of KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ is weakly dependent on temperature and the Knight shift is small, which implies weak coupling between the CaF layer and the FeAs layer. The temperature dependence of 1/$^{19}\!T_{1}$ shows a hump below $T_{\rm c}$, however the 1/$^{75}\!T_{1}$ decreases just below $T_{\rm c}$, which implies that there are strong in-plane magnetic fluctuations in the CaF layers than in the FeAs layers. This may be caused by the motion of vortices. The absence of the coherence peak suggests unconventional superconductivity in KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$.
|
|
Received: 22 October 2019
Published: 25 November 2019
|
|
PACS: |
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0302901, the National Basic Research Program of China under Grant No 2015CB921304, the National Science Foundation of China under Grant Nos 11674375 and 11634015, and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No XDB07020200. |
|
|
[1] | Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 | [2] | Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 | [3] | Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538 | [4] | Hsu F C , Luo J Y , Yeh K W , Chen T K , Huang T W , Wu P M, Lee Y C , Huang Y L , Chu Y Y , Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 | [5] | Ogino H, Matsumura Y, Katsura Y, Ushiyama K, Horii S, Kishio K and Shimoyama J i 2009 Supercond. Sci. Technol. 22 075008 | [6] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 | [7] | Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410 | [8] | Wang Z C , He C Y , Wu S Q , Tang Z T , Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 | [9] | Liu Y, Liu Y B , Tang Z T , Jiang H, Wang Z C , Ablimit A, Jiao W H , Tao Q, Feng C M , Xu Z A and Cao G H 2016 Phys. Rev. B 93 214503 | [10] | Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Uel, B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud'ko S L and Canfield P C 2017 Phys. Rev. B 96 140501 | [11] | Ishida J, Iimura S and Hosono H 2017 Phys. Rev. B 96 174522 | [12] | Wang Z, He C, Tang Z, Wu S and Cao G 2017 Sci. Chin. Mater. 60 83 | [13] | Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003 | [14] | Wang B, Wang Z C , Ishigaki K, Matsubayashi K, Eto T, Sun J, Cheng J G , Cao G H and Uwatoko Y 2019 Phys. Rev. B 99 014501 | [15] | Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509 | [16] | Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502 | [17] | Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119 | [18] | Wang T, Chu J, Jin H, Feng J, Wang L, Song Y, Zhang C, Xu X, Li W, Li Z, Hu T, Jiang D, Peng W, Liu X and Mu G 2019 J. Phys. Chem. C 123 13925 | [19] | Ma L and Yu W Q 2013 Chin. Phys. B 22 087414 | [20] | Guo S and Ning F 2018 Chin. Phys. B 27 097502 | [21] | Johnston D C 2010 Adv. Phys. 59 803 | [22] | Ishida K, Nakai Y and Hosono H 2009 J. Phys. Soc. Jpn. 78 062001 | [23] | Ahilan K, Ning F L, Imai T, Sefat A S, Jin R, McGuire M A, Sales B C and Mandrus D 2008 Phys. Rev. B 78 100501 | [24] | Majumder M, Ghoshray K, Mazumdar C, Poddar A, Ghoshray A, Berardan D and Dragoe N 2013 J. Phys.: Condens. Matter 25 025701 | [25] | Gippius A A, Morozova E N, Antipov E V, Abakumov A M, Rozova M G, Lüders K, Hoffmann W, Buntkowsky G and Klein O 2000 Phys. Rev. B 61 14370 | [26] | Corti M, Nehrke K, Tabak F, Wani B N and Miller L L 1997 Physica C 291 297 | [27] | Corti M, Suh B J, Tabak F, Rigamonti A, Borsa F, Xu M and Dabrowski B 1996 Phys. Rev. B 54 9469 | [28] | Suh B J, Borsa F, Sok J, Torgeson D R, Corti M, Rigamonti A and Xiong Q 1996 Phys. Rev. Lett. 76 1928 | [29] | De Soto S M, Slichter C P, Wang H H, Geiser U and Williams J M 1993 Phys. Rev. Lett. 70 2956 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|