Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 127601    DOI: 10.1088/0256-307X/36/12/127601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High Resolution Microwave B-Field Imaging Using a Micrometer-Sized Diamond Sensor
Wen-Hao He1, Ming-Ming Dong1, Zhen-Zhong Hu1, Qi-Han Zhang2, Bo Yang1, Ying Liu1, Xiao-Long Fan2, Guan-Xiang Du1**
1College of Telecommunication & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000
2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Cite this article:   
Wen-Hao He, Ming-Ming Dong, Zhen-Zhong Hu et al  2019 Chin. Phys. Lett. 36 127601
Download: PDF(751KB)   PDF(mobile)(746KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a diamond-based micron-scale sensor and perform high-resolution $B$-field imaging of the near-field distribution of coplanar waveguides. The sensor consists of diamond crystals attached to the tip of a tapered fiber with a physical size on the order of submicron. The amplitude of the $B$-field component $B$ is obtained by measuring the Rabi oscillation frequency. The result of Rabi sequence is fitted with a decayed sinusoidal. We apply the modulation-locking technique that demonstrates the vector-resolved field mapping of the micromachine coplanar waveguide structure (CPW). $B$-field line scan was performed on the CPW with a scan step size of 1.25 μm. To demonstrate vector resolved rf field sensing, a full field line scan acts (was performed) along four NV axes at a height of 50 μm above the device surface. The simulations are compared with the experimental results by vector-resolved measurement. This technique allows the measurement of weak microwave signals with a minimum resolvable modulation depth of 20 ppm. The sensor will have great interest in micron-scale resolved microwave $B$-field measurements, such as electromagnetic compatibility testing of microwave integrated circuits and characterization of integrated microwave components.
Received: 24 September 2019      Published: 25 November 2019
PACS:  76.30.Mi (Color centers and other defects)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
Fund: Support by the Jiangsu Distinguished Professor Program under Grant No RK002STP15001, and the NJUPT Principal Distinguished Professor Program under Grant No NY214136.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/127601       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/127601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hao He
Ming-Ming Dong
Zhen-Zhong Hu
Qi-Han Zhang
Bo Yang
Ying Liu
Xiao-Long Fan
Guan-Xiang Du
[1]Baker-Jarvis J, Janezic M D, Domich P D and Geyer R G 1994 IEEE Trans. Instrum. Meas. 43 711
[2]Peterson P Y, Gallimore A D and Haas J M 2002 Phys. Plasmas 9 4354
[3]Song H J, Shimizu N and Nagatsuma T 2007 Opt. Express 15 14901
[4]Iwanami M, Hoshino S, Kishi M and Tsuchiya M 2004 Jpn. J. Appl. Phys. 43 2288
[5]Yamazaki E, Park H, Wakana S, Kishi M and Tsuchiya M 2002 International Topical Meeting on Microwave Photonics (Awaji, Japan 5–8 November 2002) (unpublished)
[6]Wang C, Cui Y T, Katine J A, Buhrman R A and Ralph D C 2011 Nat. Phys. 7 496
[7]Xia H, Baranga A B A, Hoffman D and Romalis M V 2006 Appl. Phys. Lett. 89 211104
[8]Yang B, Dong Y, Hu Z Z, Liu G Q, Wang Y J and Du G X 2018 IEEE Trans. Microwave Theory Tech. 66 2276
[9]Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[10]Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys. 11 013017
[11]Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[12]Horowitz V R, Aleman B J, Christle D J, Clel, A N and Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493
[13]Braun D and Libchaber A 2002 Opt. Lett. 27 1418
[14]Roke S, Kleyn A W and Bonn M 2003 Chem. Phys. Lett. 370 227
[15]Zhou H G, Fan X L, Ma L, Zhang Q H, Cui L, Zhou S M, Gui Y S, Hu C M and Xue D S 2016 Phys. Rev. B 94 134421
[16]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[17]Fischer M C, Madison K W, Niu Q and Raizen M G 1998 Phys. Rev. A 58 R2648
[18]Batalov A, Zierl C, Gaebel T, Neumann P, Chan I Y, Balasubramanian G, Hemmer P R, Jelezko F and Wrachtrup J 2008 Phys. Rev. Lett. 100 077401
[19]Akhtar M N, Yousaf M, Khan S N, Nazir M S, Ahmad M and Khan M A 2017 Ceram. Int. 43 17032
[20]Lin M, Duane M H and Afsar M N 2006 IEEE Trans. Magn. 42 2885
[21]Rondin L, Tetienne J P, Rohart S, Thiaville A, Hingant T, Spinicelli P, Roch J F and Jacques V 2013 Nat. Commun. 4 2279
[22]Horsley A, Appel P, Wolters J, Achard J, Tallaire A, Maletinsky P and Treutlein P 2018 Phys. Rev. Appl. 10 044039
Related articles from Frontiers Journals
[1] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 127601
[2] Jian Xing, Yan-Chun Chang, Ning Wang, Gang-Qin Liu, Xin-Yu Pan. Electron Spin Decoherence of Nitrogen-Vacancy Center Coupled to Multiple Spin Baths[J]. Chin. Phys. Lett., 2016, 33(10): 127601
[3] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 127601
[4] ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen. Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State[J]. Chin. Phys. Lett., 2015, 32(06): 127601
[5] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 127601
[6] ZHAO Yu-Jing, FANG Xi-Ming, ZHOU Fang, SONG Ke-Hui. Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2013, 30(5): 127601
[7] TAO Kun, ZHANG Qi-Ren, LIU Ting-Yu, ZHANG Fei-Wu. Origin of the 420nm Absorption Band and Effect of Doping Fluorine in PbWO4 Crystals[J]. Chin. Phys. Lett., 2005, 22(1): 127601
[8] ZHANG Qi-Ren, LIU Ting-Yu, YAN Fei-Nan. V-F and V+K Aggregate Colour Centres: Origin of the Room-Temperature 350 nm Absorption Band in PbWO4[J]. Chin. Phys. Lett., 2004, 21(6): 127601
[9] ZHAO Quan-Zhong, QIU Jian-Rong, YANG Lü-Yun, JIANG Xiong-Wei, ZHAO Chong-Jun, ZHU Cong-Shan. Fabrication of Microstructures in LiF Crystals by a Femtosecond Laser[J]. Chin. Phys. Lett., 2003, 20(10): 127601
[10] ZHOU Qin-Ling, LIU Li-Ying, XU Lei, WANG Wen-Cheng, ZHU Cong-Shan, GAN Fu-Xi,. Near-Infrared Femtosecond Laser Induced Defect Formation in High Purity Silica Below the Optical Breakdown Threshold[J]. Chin. Phys. Lett., 2003, 20(10): 127601
[11] JIN Tongzheng, WANG Dazhi, HAN Shiying, SUI Yunxia, ZHAO Xiaoning, JIN Sizhao*. Investigation of Nanocrystalline SnO2 by Electron Spin Resonance[J]. Chin. Phys. Lett., 1992, 9(10): 127601
Viewed
Full text


Abstract