FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation |
Gui-Hao Jia**, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou |
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875
|
|
Cite this article: |
Gui-Hao Jia, Yu Xu, Xiao Kong et al 2019 Chin. Phys. Lett. 36 124701 |
|
|
Abstract Using the linear local induction approximation, we investigate the self-induced motion of a vortex-line that corresponds to the motion of a particle in quantum mechanics. Provided Kelvin waves, the effective Schrödinger equation, physical quantity operators, and the corresponding path-integral formula can be obtained. In particular, the effective Planck constant defined by parameters of vortex-line motion shows the mathematical relation between the two fields. The vortexline–particle mapping may help in understanding particle motion in quantum mechanics.
|
|
Received: 09 July 2019
Published: 25 November 2019
|
|
PACS: |
47.32.-y
|
(Vortex dynamics; rotating fluids)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 1167402. |
|
|
[1] | Thomson W 1867 Trans. R. Soc. Edinburgh 25 217 | [2] | Hall H E 1958 Proc. R. Soc. A 245 546 | [3] | Batchelor G K 1970 An Introduction Fluid Dynamics (Cambridge: Cambridge University Press) | [4] | Hasimoto H 1972 J. Fluid Mech. 51 477 | [5] | Donnelly R J and Barenghi C F 1998 J. Phys. Chem. Ref. Data 27 1217 | [6] | Boffetta G, Celani A, Dezzani D, Laurie J and Nazarenko S 2009 J. Low Temp. Phys. 156 193 | [7] | Salman H 2014 J. Phys.: Conf. Ser. 544 012005 | [8] | Salman H 2013 Phys. Rev. Lett. 111 165301 | [9] | Vinen W F and Niemela J J 2002 J. Low Temp. Phys. 128 167 | [10] | Laurie J, L'Vov V S, Nazarenko S and Rudenko O 2010 Phys. Rev. B 81 104526 | [11] | Schrö dinger E 1926 Ann. Phys. 384 361 | [12] | Malomed B 2005 Nonlinear Schrödinger Equations in Encyclopedia (Cambridge: Farlex) | [13] | Batygin K 2018 Mon. Not. R. Astron. Soc. 475 5070 | [14] | Barenghi C F, Donnelly R J and Vinen W F 1983 J. Low Temp. Phys. 52 189 | [15] | Baggaley A W 2012 J. Low Temp. Phys. 168 18 | [16] | Fonda E, Meichle D P, Ouellette N T, Hormoz S and Lathrop D P 2014 Proc. Natl. Acad. Sci. USA 111 4707 | [17] | Tong B G, Yin X Y and Zhu K Q 2009 Theory of Vorticity (Beijing: China Science and Technology University Press) (in Chinese) | [18] | Feynman R P 1955 Prog. Low Temp. Phys. 1 17 | [19] | Kou S P 2017 Int. J. Mod. Phys. B 31 1750241 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|