Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 127201    DOI: 10.1088/0256-307X/36/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode
Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou**
State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433
Cite this article:   
Yanjing Tang, Xianxi Yu, Shaobo Liu et al  2019 Chin. Phys. Lett. 36 127201
Download: PDF(812KB)   PDF(mobile)(938KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An ultra-thin molybdenum(VI) oxide (MoO$_{3})$ modification layer can significantly improve hole injection from an electrode even though the MoO$_{3}$ layer does not contact the electrode. We find that as the thickness of the organic layer between MoO$_{3}$ and the electrode increases, the hole injection first increases and it then decreases. The optimum thickness of 5 nm corresponds to the best current improvement 70%, higher than that in the device where MoO$_{3}$ directly contacts the Al electrode. According to the 4,4-bis[N-(1-naphthyl)-N-phenyl-amino] biphenyl (NPB)/MoO$_{3}$ interface charge transfer mechanism and the present experimental results, we propose a mechanism that mobile carriers generated at the interface and accumulated inside the device change the distribution of electric field inside the device, resulting in an increase of the probability of hole tunneling through the injection barrier from the electrode, which also explains the phenomenon of hole injection enhanced by MoO$_{3}$/NPB/Al composite anode. Based on this mechanism, different organic materials other than NPB were applied to form the composite electrode with MoO$_{3}$. Similar current enhancement effects are also observed.
Received: 10 September 2019      Published: 25 November 2019
PACS:  72.80.Ga (Transition-metal compounds)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11874007 and 11574049.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/127201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/127201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanjing Tang
Xianxi Yu
Shaobo Liu
Anran Yu
Jiajun Qin
Ruichen Yi
Yuan Pei
Chunqin Zhu
Xiaoyuan Hou
[1]Tokito S et al 1996 J. Phys. D 29 2750
[2]Wang Z B et al 2009 Phys. Rev. B 80 235325
[3]Qiu C F et al 2003 J. Appl. Phys. 93 3253
[4]Murdoch G B et al 2008 Appl. Phys. Lett. 93 083309
[5]Greiner M T et al 2012 Nat. Mater. 11 76
[6]Meyer J et al 2012 Adv. Mater. 24 5408
[7]Irfan I and Gao Y 2015 Improvement of Charge Transfer between Electrode, Semiconductor by Thin Metal Oxide Insertion in Topics in Applied Physics ed Yang Y and Li G (Berlin: Heidelberger) PLATZ 3, D-14197 vol 130 p 67
[8]Wang C et al 2014 Appl. Phys. Lett. 105 181602
[9]Ke J et al 2015 Sol. Energy Mater. Sol. Cells 133 248
[10]Liu W et al 2015 Chin. Phys. Lett. 32 077206
[11]Wang H et al 2010 J. Appl. Phys. 107 024510
[12]Zhao G et al 2011 Chin. Phys. Lett. 28 127203
[13]Yeh T et al 2018 Org. Electron. 59 266
[14]Lee J et al 2019 J. Appl. Phys. 125 145501
[15]Subbiah J et al 2012 ACS Appl. Mater. & Interfaces 4 866
[16]Matsushima T, Kinoshita Y and Murata H 2007 Appl. Phys. Lett. 91 253504
[17]Kroeger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Appl. Phys. Lett. 95 123301
[18]Li L, Liu X, Lyu L, Wu R, Liu P, Zhang Y, Zhao Y, Wang H, Niu D, Yang J and Gao Y 2016 J. Phys. Chem. C 120 17863
[19]He Z, Yu H, Peng H and Hou X 2015 Chin. Phys. B 24 097201
[20]Zhao Y, Zhang J, Liu S, Gao Y, Yang X, Leck K S, Abiyasa A P, Divayana Y, Mutlugun E, Tan S T, Xiong Q, Demir H V and Sun X W 2014 Org. Electron. 15 871
[21]Hamwi S, Meyer J, Kroeger M, Winkler T, Witte M, Riedl T, Kahn A and Kowalsky W 2010 Adv. Funct. Mater. 20 1762
[22]Meyer J, Kröger M, Hamwi S, Gnam F, Riedl T, Kowalsky W and Kahn A 2010 Appl. Phys. Lett. 96 193302
[23]Qi X, Li N and Forrest S R 2010 J. Appl. Phys. 107 014514
[24]Yang J, Bao Q, Xiao Y, Deng Y, Li Y, Lee S and Tang J 2012 Org. Electron. 13 2243
[25]Yang J, Xiao Y, Deng Y, Duhm S, Ueno N, Lee S, Li Y and Tang J 2012 Adv. Funct. Mater. 22 600
[26]Yu A R, Pei Y, Yi R C, Liu S B, Chu M, Yu H M, Tang Y J, He Z S and Hou X Y 2017 Org. Electron. 46 121
[27]Tsai C, Liu Y, Tang J, Kao P, Chiang C and Chu S 2018 Synth. Met. 243 121
[28]Zhang S T, Wang Z J, Zhao J M, Zhan Y Q, Wu Y, Zhou Y C, Ding X M, Hou X Y 2004 Appl. Phys. Lett. 84 2916
[29]Parker I D 1994 J. Appl. Phys. 75 1656
[30]Meng Y, Ji H and Sun Q 2013 The Mechanism of Modification Effect of MoO$_3$ on Al Anode of Top-Emitting Organic Light-Emitting Device (Beijing: People's Press) (in Chinese)
[31]Wang X J, Zhao J M, Zhou Y C, Wang X Z, Zhang S T, Zhan Y Q, Xu Z, Ding H J, Zhong G Y, Shi H Z, Xiong Z H, Liu Y, Wang Z J, Obbard E G, Ding X M, Huang W and Hou X Y 2004 J. Appl. Phys. 95 3828
[32]Deng Z B, Ding X M, Lee S T and Gambling W A 1999 Appl. Phys. Lett. 74 2227
[33]Zhu F R, Low B L, Zhang K R and Chua S J 2001 Appl. Phys. Lett. 79 1205
[34]Zhan Y Q, Xiong Z H, Shi H Z, Zhang S T, Xu Z, Zhong G Y, He J, Zhao J M, Wang Z J, Obbard E, Ding H J, Wang X J, Ding X M, Huang W and Hou X Y 2003 Appl. Phys. Lett. 83 1656
[35]Sun Z, Ding X, Ding B, Gao X, Hu Y, Chen X, He Y and Hou X 2013 Org. Electron. 14 511
[36]Sun Z, Ding B, Wu B, You Y, Ding X and Hou X 2012 J. Phys. Chem. C 116 2543
[37]Hu Y M, He Y, Chen X Q, Zhan Y Q, Sun Z Y, You Y T and Hou X Y 2012 Appl. Phys. Lett. 100 163303
[38]Liu X, Wang C, Wang C, Irfan I and Gao Y 2015 Org. Electron. 17 325
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 127201
[2] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 127201
[3] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 127201
[4] Xu-Bo Lai, Yu-Hang Wang, Xiao-Lan Shi, Dong-Yong Li, Bo-Yang Liu, Rong-Ming Wang, Liu-Wan Zhang. Bipolar Resistive Switching in Epitaxial Mn$_{3}$O$_{4}$ Thin Films on Nb-Doped SrTiO$_{3}$ Substrates[J]. Chin. Phys. Lett., 2016, 33(06): 127201
[5] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 127201
[6] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 127201
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 127201
[8] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 127201
[9] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 127201
[10] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 127201
[11] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 127201
[12] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 127201
[13] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 127201
[14] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 127201
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 127201
Viewed
Full text


Abstract